From practitioners' knowledge to climate modelling: obstacles, knowledge gaps and ways forward showcased through reindeer herding

Heidrun Matthes, Jarle W Bjerke, Jussi T Eronen, Bruce C Forbes, J Otto Habeck, Tim Horstkotte, Kirill Istomin, Teresa Komu, Jouku Kumpula, Roza Laptander, Antti-Juhani Pekkarinen, Sirpa Rasmus, Hans Tømmervik goal: provide relevant and relatable climate change information to practitioners of environment dependent livelihoods

HELMHO

mapping of the operational framework of the livelihood

identification of critical climate conditions that impact the livelihood's success

translating these conditions into climate indices

identifying data sources: gaps in understanding, data availability and data quality

calculating indices from appropriate data sources

presenting results in a useable and relatable way

- if you are a practitioner, you do not need these steps
- as a climate scientist, I need them for context

- taking the next steps for reindeer herding as an example
- showing the obstacles and solutions we found

HELMHOLTZ

mapping of the operational framework of the livelihood

identification of critical climate conditions that impact the livelihood's success

economics and operations of the livelihood

- Calving in enclosures
- Pasture rotation
- Traditional knowledge
- ...

competition (what other livelihoods are competing for the same resources)

- mining
- forestry
- wind power
- •••

(environmental) conditions the livelihood depends

on

- Predator population
- Snow conditions
- •

. . .

social and legal framework

. . .

- Indigenous rights
- Land-use planning
- Subsidies and compensations
- •

identification of critical climate conditions that impact the livelihood's success

spring (calving)

- snow free patches
- snow storms

- ice crusts
- river and lake ice

early summer (calf marking, migration)

- high water levels in rivers
- strong currents

summer

- insect harassment (insect numbers)
- insect harassment (insect attacks)
- hot summers
- wet/dry summers
- permafrost degradation
- shifts in occurrence of predators/plants
- snow bed degradation

early autumn

- mushroom growth
- warm conditions during rutting
- wet conditions during rutting

early spring

- snow melt
- rain on snow
- ice crusts

winter

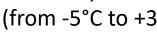
- rain on snow
- mild temperatures
 - (from $-5^{\circ}C$ to $+3^{\circ}C$)

early winter (migration)

- rain on snow
- hoarfrost; frozen water on plants/lichen
- ice crust on bare ground (ground ice or frost)

frozen/unfrozen soil at the moment of first snow

late autumn (rutting , round ups)



• of first snow

wet/dry soil at the moment

HELMHOLTZ

mapping of the operational framework of the livelihood

identification of critical climate conditions that impact the livelihood's success

translating these conditions into climate indices

identifying data sources: gaps in understanding, data availability and data quality

calculating indices from appropriate data sources

presenting results in a useable and relatable way

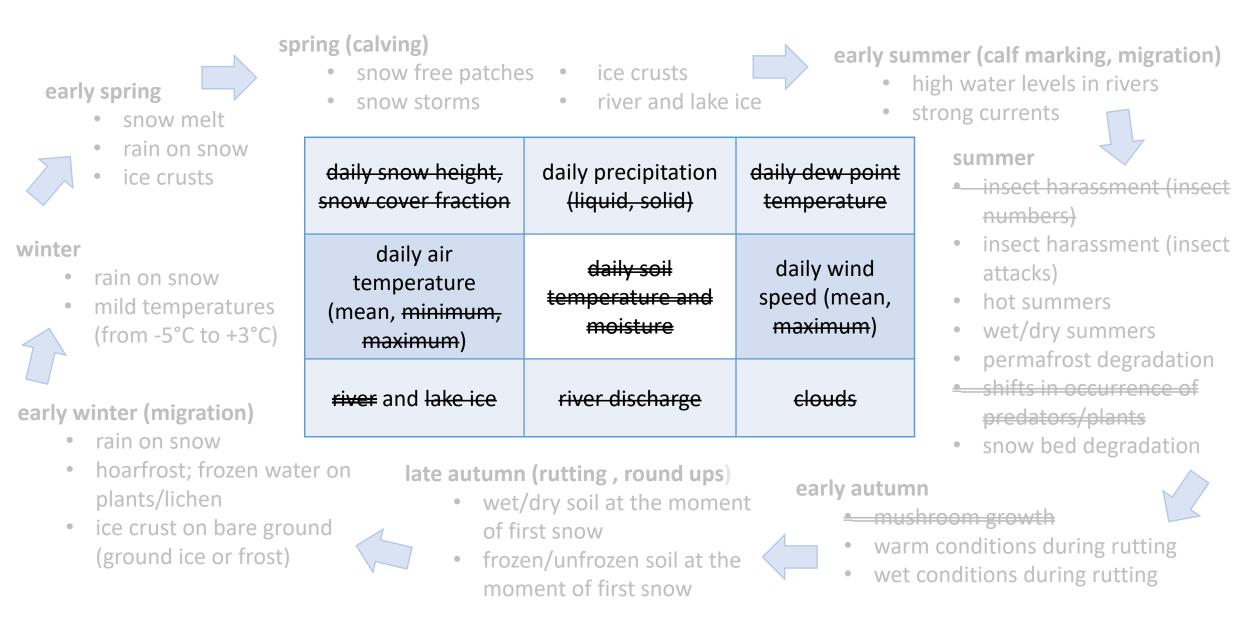
In an ideal framework, here is the entry point for the practitioner's request. Example: Will hot summers intensify over the coming decades?

Clarifications: What does hot mean? What is your definition of summer? What is intensification (more hot days, days with higher temperatures ...)?

Clarification: What spatial scale is needed? What type of future (best, worst, most likely ...)? Is the data reliable (suitable)? What is the uncertainty?

Clarification: What type of output makes sense to the practitioner?

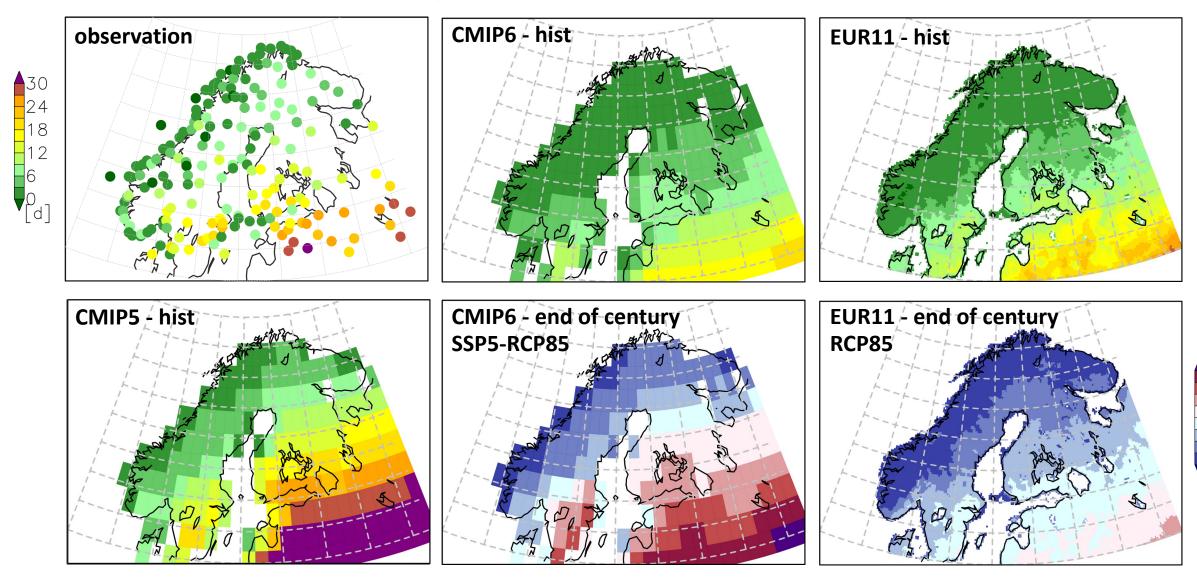
translating these conditions into climate indices



- translate the generalized • critical conditions into climate indices we can compute from climate model output
- identify necessary • variables

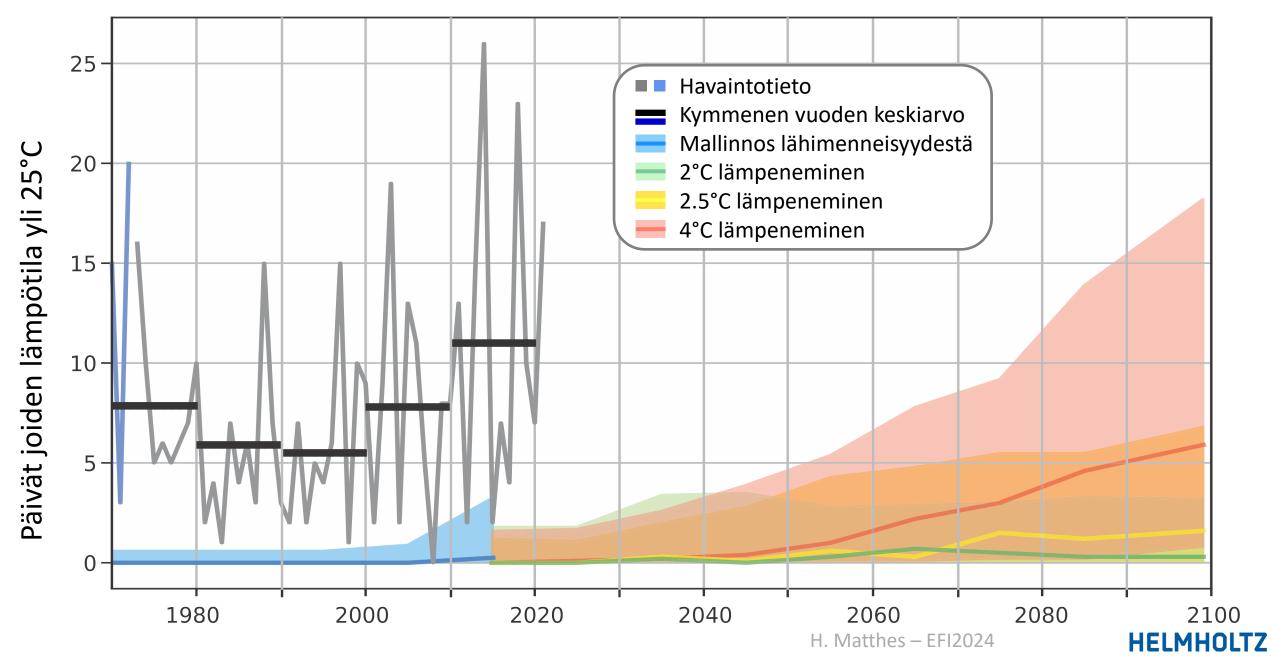
critical condition	meteorological	climate index	description
	variables		
timing of snow melt	snow water	t _{melt}	date of the first day with snw
	equivalent or snow		= 0
	height (snw)		
rain on snow	liquid precipitation	ROS	number of days with snw>3cm
	(rain), snow height		and rain>1mm and for the
	or snow water		following day tasmin<0°C
	equivalent (snw),		
	daily minimum		
	temperature		
	(tasmin)		
ice crusts	daily minimum and	ice _{snw}	number of days with snw>3cm
	maximum		and tasmin<0 °C and tasmax>0
	temperature		°C
	(tasmin, tasmax)		
snow free patches	snow cover fraction	t _{snfc}	date of the first day with snow
	(snfc)		cover fraction < 50%
snow storms	daily maximum	wnd _{snw}	days with wndmax>40km/h
	wind speed		(11m/s) and snow fall > 10mm
	(wndmax), solid		
	precipitation		
	(snow)		
river ice	river ice (ice_r)	t _{ice_r}	date of first/last day with
			ice_r>threshold (load bearing)
lake ice	lake ice (ice_l)	t _{ice_I}	date of first/last day with
			ice_l>threshold (load bearing)
		H. Matthes –	EFI2024 HELN

spr early spring • snow melt	 ring (calving) snow free patches snow storms river and lake ice 		•		
 rain on snow ice crusts 	daily snow height, snow cover fraction	daily precipitation (liquid, solid)	daily dew point temperature	summer - insect harassment (insect numbers)	
 vinter rain on snow mild temperatures (from -5°C to +3°C) 	daily air temperature (mean, minimum, maximum)	daily soil temperature and moisture	daily wind speed (mean, maximum)	 insect harassment (insect attacks) hot summers wet/dry summers 	
early winter (migration)	river and lake ice	river discharge	clouds	 permafrost degradation <u>shifts in occurrence of</u> predators/plants 	
 rain on snow hoarfrost; frozen wate plants/lichen ice crust on bare grou (ground ice or frost) 	ind vet/ of fin froze	(rutting, round ups) dry soil at the momen rst snow en/unfrozen soil at the nent of first snow	s e mus s e mus	 snow bed degradation nn shroom growth rm conditions during rutting conditions during rutting 	


calculating indices from appropriate data sources

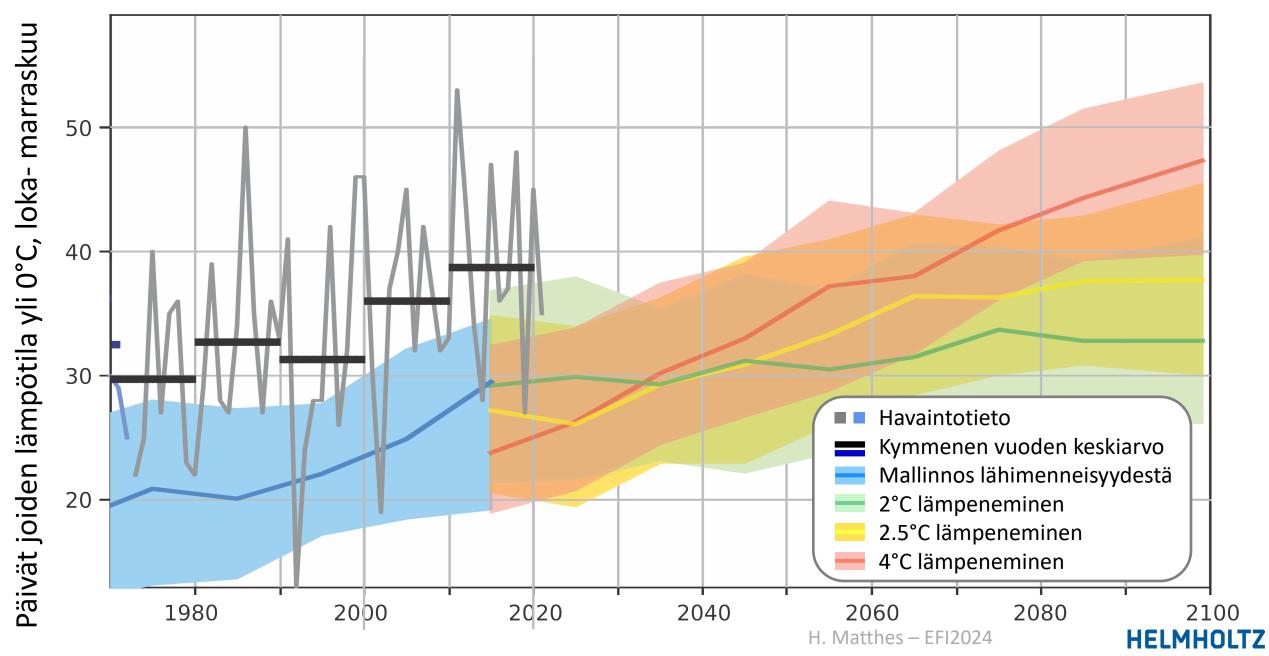
0 [d]

HELMHOLTZ


hot summers: days with maximum temperature above 25°C

Sodankylä

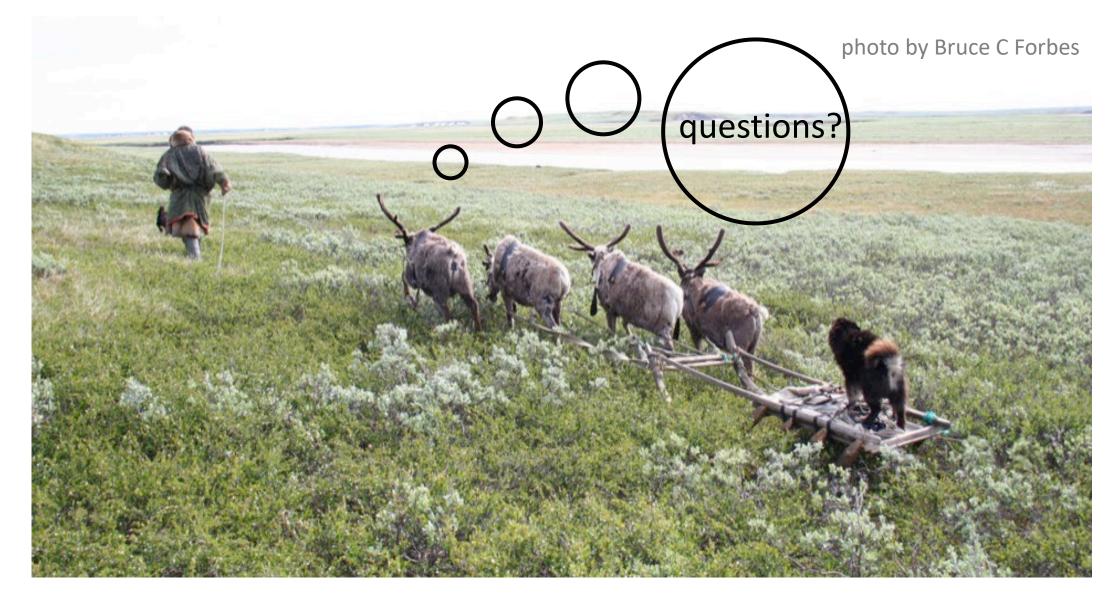
presenting results in a useable and relatable way



presenting results in a useable and relatable way

Where is what knowledge needed?

- translating critical climate conditions into climate indices requires background knowledge and context
- understanding suitability for purpose of model output also requires background knowledge and context


What should modelers consider?

- specific target groups of climate model projections have specific needs in variables
- providing information on different possible futures with adequate uncertainty estimates requires these variables from big intercomparison projects

