Characterization of the daily and circadian valve behavior of the European flat oyster Ostrea edulis


Marine organisms exhibit a multitude of biological rhythms synchronized with the interactions of the sun-, earth-, and moon cycles. However, the biological rhythms in bivalves remain poorly studied. This study focuses on the native European flat oyster (Ostrea edulis), an endangered species of coastal ecosystems and a key organism in restoring of biogenic reef habitats. We aim to determine whether a molecular endogenous circadian rhythm exists in O. edulis and to characterize its daily expression. To address these questions, the oysters’ valve behavior, as an output of the circadian clock expression, was recorded under different light conditions and free-running regimes using non-invasive valvometry. This work demonstrates the existence of a circadian clock mechanism that generates a labile behavioral circadian oscillation under free-running conditions. In light: dark conditions, a diel rhythm appears nocturnal, synchronizable to a shift of light phase, and remains unmodified whether the oysters are fed or not. This rhythm anticipates light: dark changes, indicating its endogenous origin. Finally, when exposed to artificial light at night the daily behavior is disrupted. This study characterizes the circadian behavioral rhythm of O. edulis’s as plastic and labile. This plasticity would be advantageous in terms of ecological adaptability but increases sensitivity to anthropogenic pressures such as light pollution.


Characterization of the daily and circadian valve behavior of the European flat oyster Ostrea edulis.pdf - Other
Download (2MB) | Preview