
LIMNOLOGY
     and
OCEANOGRAPHY Limnol. Oceanogr. 9999, 2025, 1–17

© 2025 The Author(s). Limnology and Oceanography published by Wiley Periodicals LLC
on behalf of Association for the Sciences of Limnology and Oceanography.

doi: 10.1002/lno.70125

RESEARCH ARTICLE

Predictive links between microbial communities and biological oxygen
utilization in the Arctic Ocean

Emelia J. Chamberlain ,1,2* Sebastian Rokitta ,3 Björn Rost ,3,4 Alessandra D’Angelo ,5

Jessie M. Creamean ,6 Brice Loose ,5 Adam Ulfsbo ,7 Allison A. Fong ,3 Clara J. M. Hoppe ,3

Elise S. Droste ,8 Daiki Nomura ,9 Kirstin Schulz ,10 Jeff Bowman 1

1Scripps Institution of Oceanography, University of San Diego California, La Jolla, California, USA; 2Woods Hole
Oceanographic Institution, Woods Hole, Massachusetts, USA; 3Alfred-Wegener-Institute Helmholtz Centre for Polar and
Marine Research, Bremerhaven, Germany; 4University of Bremen, Bremen, Germany; 5Graduate School of Oceanography,
University of Rhode Island, Kingston, Rhode Island, USA; 6Department of Atmospheric Science, Colorado State University,
Fort Collins, Colorado, USA; 7Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden; 8School of
Environmental Sciences, University of East Anglia, Norwich, UK; 9Hokkaido University, Hakodate, Japan; 10Oden Institute
for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, USA

Abstract
Microbial metabolism influences rates of net community production (NCP), exerting a direct biological control

on marine oxygen and carbon fluxes. In the Arctic, it is increasingly important to understand and quantify this pro-
cess, as ecological and oceanographic conditions shift due to changing climate. Here, we describe potential ecological
links between pelagic microbial diversity and an NCP precursor, biological oxygen utilization, using machine learn-
ing and paired observations of community structure and metabolic activity from a seasonally and spatially variable
transect of the Arctic Ocean (2019–2020 MOSAiC Expedition). Community structure was determined using 16S (pro-
karyotic) and 18S (eukaryotic) rRNA gene amplicon sequencing, and metabolic activity was derived from ΔO2/Ar.
Using self-organizing maps, we identified clear successional patterns in observed microbial community structure that
were seasonally driven in the upper ocean and vertically stratified with depth. Metabolic activity was also stratified,
with a primarily net heterotrophic water column (median �1.5% biological oxygen saturation), excepting periodic
oxygen supersaturation (maximum: 13.6%) within the mixed layer. Using DNA sequences as predictor variables, we
then constructed a random forest regression model that reliably reconstructed biological oxygen concentrations (root
mean squared error = 4.14 μmol kg�1). Top predictors from this model were from heterotrophic (bacteria) or poten-
tially mixotrophic (dinoflagellate) taxa. These analyses highlight biologically driven diagnostic tools that can be used
to expand biogeochemical datasets and improve the microbial perspectives and metabolisms represented in ecologi-
cal models of net productivity and carbon flux in a changing Arctic Ocean.
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Net community production (NCP), or the metabolic bal-
ance between photosynthetic carbon fixation and heterotro-
phic aerobic respiration, imposes a biological control on the
ocean carbon sink (Volk and Hoffert 1985). The Arctic Ocean
is considered a net carbon sink: abiotically, due to the cooling
and downwelling of inflow waters (Yasunaka et al. 2023), and
biotically, due to high levels of net primary production along
coastal shelves (MacGilchrist et al. 2014). However, published
estimates of surface Arctic Ocean NCP are relatively low (aver-
age � 4, maximum � 20% biological oxygen supersaturation)
with both temporal and spatial variability (Eveleth et al. 2014;
Ulfsbo et al. 2014). In a recent time-series study from the west-
ern Arctic Ocean, surface NCP displayed heterogeneous and
non-linear responses to environmental change, likely due to
compounding ecosystem adjustments (Zhou et al. 2024).
Understanding how the complex physical and biological con-
trols on NCP interact and shift under changing Arctic condi-
tions, such as ocean warming and sea ice decline (Meredith
et al. 2019), is critical for predicting the future of the Arctic
Ocean carbon sink.

Microbial community structure exerts a strong control on
NCP (Guidi et al. 2016; Wang et al. 2018) and thus a biologi-
cal control on carbon sequestration. Recent advancements in
sequencing technology (Edwards et al. 2020; Mock et al. 2022)
and comprehensive field efforts aimed at monitoring the
microbial community of the Arctic Ocean (Royo-Llonch
et al. 2021) and associated ice habitats (Campbell et al. 2022b)
have provided a nice baseline for measurements of Arctic
microbial community structure. Previous studies have found
that such measurements can be utilized to estimate metabolic
rates (Erazo et al. 2021; Connors et al. 2024), predict key tran-
sitions in ecosystem state (Bowman et al. 2017), and better
understand the biological mechanisms underlying variability
in observed biogeochemical processes (Dutta et al. 2022). In
polar regions specifically, clear relationships between commu-
nity structure (taxonomic composition) and NCP have been
observed (Campbell et al. 2022a), with some eukaryotic com-
munity members acting as viable predictors of measured rates
(Lin et al. 2017). However, prokaryotic predictors of NCP have
been less well studied despite their critical role in global respi-
ration (Worden et al. 2015) and observed predictive capacity
for other ecological processes (Bowman et al. 2017; Dutta
et al. 2022).

Machine learning allows us to extract the embedded patterns
and predictive relationships between biogeochemical processes
and diversity data (Bowman 2021). In recent years, an increasing
number of studies have leveraged machine learning algorithms
when analyzing community structure data for such purposes,
with great progress in predicting environmental information
from community structure alone (Dutta et al. 2022; Connors
et al. 2024). To train such models, large paired datasets of both
the taxonomic makeup of the microbial community and the
biogeochemical parameter of interest are required. The 2019–
2020 Multidisciplinary Drifting Observatory for the Study of

Arctic Climate Expedition (Nicolaus et al. 2022; Rabe et al. 2022;
Fong et al. 2024) provided a novel opportunity to collect paired
measurements of both community structure and net productiv-
ity estimates across seasonal cycles in the under-sampled region
of the central Arctic Ocean. MOSAiC was designed to carry out a
year-long cross-disciplinary and process-level study of the inter-
connected central Arctic ocean–ice–atmosphere climate system
across a seasonally and spatially variable drifting transect of the
central Arctic Ocean.

In this study, we investigate the biogeochemical potential
and predictive capacity of microbial (bacterial, archaeal, and
eukaryotic) community structure on the relative ratio of biologi-
cally transformed oxygen (O2) and biologically inert argon (Ar),
ΔO2/Ar, which can be used as a signal of biological activity
reflecting the net metabolic balance between photosynthesis
and respiration, that is, the net trophic state controlling NCP
(Eveleth et al. 2014). First, we analyzed the general trends and
oceanographic context of water column microbial community
composition and succession during the MOSAiC Drift using Self
Organizing Maps (SOMs; Wehrens and Kruisselbrink 2018).
Next, we identified specific microbial taxa with clear predictive
linkages to observed biological oxygen utilization through the
construction of a random forest (RF; Breiman 2001) regression
model. Taken together, our findings help advance ecological
understanding of the current Arctic Ocean and raise new ques-
tions regarding the crucial role which microbial organisms, par-
ticularly heterotrophs, play in regulating pelagic net community
production and carbon sequestration.

Materials and methods
Oceanographic data collection—MOSAiC Expedition

In October 2019, the German icebreaker RV Polarstern was
tethered to a multi-year ice floe in the Amundsen Basin and
an ice camp was established to conduct research while pas-
sively drifting (4 October 2019–2031 July 2020; Fig. 1). A
break in this drift occurred when Polarstern was required to
temporarily leave, then re-establish, the ice camp during res-
upply (27 May–15 June 2020; considered “active transit” in
Fig. 1). On July 31st, Polarstern reached the marginal ice zone
and the original ice floe broke apart. Polarstern then relocated
further north (considered “active transit” in Fig. 1), and a sec-
ond ice camp was established to continue observations for the
remainder of the MOSAiC time series (21 August 2020–2020
September 2020). There are two significant gaps in the data
presented here, a period where no project personnel were
onboard (December 2019–March 2020) and another during
the May–June 2020 resupply mission.

Ecological and biogeochemical data used in this study were
collected from either Polarstern’s underway seawater system
(inlet at 11 m depth) or from Niskin bottles attached to a Con-
ductivity, Temperature and Depth (CTD) rosette package
(Fig. 1). Details on CTD operations and ecological sampling
from the rosette can be found in Rabe et al. (2022) and Fong
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et al. (2024). CTDs were equipped with sensors for measuring
pressure, temperature, conductivity, and total dissolved oxygen
(Tippenhauer et al. 2023a, 2023b). Values for dissolved oxygen
were then corrected using periodic Winkler titrations (Ulfsbo
et al. 2023). Temperature and salinity of the underway seawater
system were collected by the remote temperature sensor SBE38
integrated with the SBE21 Thermosalinograph (Seabird) system
installed on Polarstern (Haas et al. 2021; Kanzow et al. 2021;
Rex et al. 2021a, 2021b, 2021c). Calculated oceanographic
parameters used in this study, such as mixed layer depth and
water mass influence, are from Schulz et al. (2024). A total of
334 of the water column (CTD rosette or underway system)
observations for microbial community structure were sampled
at the same time as water column chlorophyll a (Chl a) concen-
tration (Hoppe et al. 2023b, 2023a).

Microbial community structure and segmentation
A total of 693 seawater samples (approximately 0.5–1 L)

were collected in acid-cleaned and thrice sample-rinsed 1 L

HDPE plastic bottles once daily from the ship’s underway sys-
tem (11 m) and on an approximately weekly basis from Niskin
bottles attached to the CTD rosette (full water column; 0–
4000 m). Collected samples were filtered immediately or kept
dark at 0�C until filtered (within 4 h) through a sterile 0.2 μm
Supor membrane disc filter (Pall Corporation) using a vacuum
filtration manifold. The manifold was flushed with MilliQ and
ethanol sterilized before, in between, and after samples. Filters
were stored at �80�C onboard Polarstern until the end of the
expedition when they were shipped to Scripps Institution of
Oceanography on dry ice and stored at �80�C.

A KingFisher™ Flex Purification system and MagMax
Microbiome Ultra Nucleic Acid Extraction kit (ThermoFisher
Scientific) were used for extractions. Extracted material was
then sent to the Environmental Sample Preparation and
Sequencing Facility (ESPSF) at Argonne National Laboratory
where amplicon library preparation and sequencing were con-
ducted using a 151 bp � 151 bp paired-end run on the
Illumina Miseq platform. rRNA gene amplification was

Fig. 1. Sampling locations. Geographic location and bathymetry (IBCAO v5; Jakobsson et al. 2024) of daily underway (UW) sample collections (cyan)
and CTD stations (navy) during the MOSAiC Drift. Passive drift direction is indicated by the maroon arrows, with the dashed portion representing our
data gap. Samples collected during active transit of the Polarstern are marked in black (i.e., not collected at the MOSAiC floe location during drift, thin
gray arrows indicate sailing direction). Average sea ice extent from the minimum month, September 2020, is marked by the thick black line (Hersbach
et al. 2023) and geographic features are labeled in gray, where AB = Amundsen Basin, GR = Gakkel Ridge, NB = Nansen Basin, YP = Yermak Plateau,
and FS = Fram Strait.
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conducted using universal primers 515F and 806R (16S, V4;
Walters et al. 2016) and 1380F and 1510R (18S, V9; Amaral-
Zettler et al. 2009). The R package dada2 (Callahan et al. 2016)
was used to denoise and merge Illumina reads prior to taxo-
nomic classification using PAthway PRediction by phyloge-
netIC placement (paprica v0.7.0; Bowman and Ducklow 2015;
Erazo et al. 2021). Further details on amplification, data QC,
and taxonomic assignment can be found in Supporting
Information Text S1.

Briefly, the paprica pipeline was used to assign individual
amplicon sequence variants (ASVs) to its closest relative
among completed genomes in either the Genbank RefSeq
(16S; Haft et al. 2018) or PR2 (18S; v4.13.0 Guillou et al. 2013)
reference databases (which does not necessarily indicate the
presence of that exact strain, but a similar organism). For bac-
teria and archaea, paprica also uses the point of placement in
the reference tree to estimate genomic characteristics such as
genome size and 16S rRNA gene copy number (Erazo
et al. 2021), as well as theoretical growth rates using the gRo-
don package (Weissman et al. 2021; Connors et al. 2024). Esti-
mated doubling times from codon usage do not reflect in situ
temperature conditions and therefore represent theoretical
maximums only used to compare between samples and not as
in situ rates. Final read counts for 16S ASVs were normalized
to estimated 16S rRNA gene copy number before calculations
of relative abundance.

Self Organizing Maps were trained using the “kohonen”
package (Wehrens and Kruisselbrink 2018) to assign each
sample to a group of similar samples (Bowman et al. 2017),
effectively segmenting the community into statistically
coherent groups. Self Organizing Map training was con-
ducted using the Hellinger transformed relative abundance
matrices of either 16S or 18S ASVs (independent models) on
a 6 � 6 toroidal grid with hexagonal map units. Grid size was
selected qualitatively based on the iterative distribution of
samples assigned to each map unit in grids up to 10 � 10.
Segmentation was achieved through k-means clustering of
the map units, with a final k (number of clusters) selected
qualitatively based on the within-clusters sum of squares
scree plot and iterative experimental variation around the
perceived optimum, or “elbow,” aiming for a reasonable dis-
tribution of clusters and samples within the map grid. This
results in each sample assigned to a specific cluster rep-
resenting a unique prokaryotic/eukaryotic community eco-
type, here termed “mode.”

Kruskal–Wallis and Wilcoxon signed-rank tests (rstatix
package; Kassambara 2023a) were used to compare mean
environmental and genetic parameters between modes.
Modes were additionally compared to the results of a non-
metric multidimensional scaling (NMDS) ordination. This
was derived from a Bray–Curtis dissimilarity matrix of
Hellinger transformed 16S or 18S ASV relative abundances
and correlated with basic environmental parameters (vegan
package; Oksanen et al. 2015). A permutational ANOVA

(PERMANOVA, 999 permutations) was used to test whether
there was a significant (α = 0.05) difference between modes
(vegan package; Oksanen et al. 2015). All statistical analyses
were conducted in R, version 4.3.1 (R Core Team 2023) with
plots generated using packages pheatmap (Kolde 2019),
ggplot2 (Wickham 2016), and associated packages
(e.g., ggpubr; Kassambara 2023b).

Total oxygen (O2) and biological oxygen anomalies
(O2/Ar)

Biological oxygen saturation, estimated from the ratio of
O2 and Ar concentrations, was used as a qualitative indicator
of recent metabolic activity and a functional estimate of
trends in NCP (Eq. 1). This value was obtained following the
methods and assumptions of Craig and Hayward (1987)
where the ratio of physical O2 concentration to O2 at air-
saturation equals the ratio of Ar concentration to Ar at air-
saturation.

ΔO2=Ar¼ O2½ �meas= Ar½ �meas

O2½ �sat= Ar½ �sat

� �� �
–1 ð1Þ

Dissolved O2 and Ar concentrations were measured using a
Pfeiffer QMG 220 quadrupole membrane inlet mass spectrom-
eter (MIMS) with a flow-through silicon capillary membrane
inlet and pulse tube cooler for water vapor removal. Underway
seawater was measured continuously throughout the entirety
of the MOSAiC Expedition as described in Rokitta et al. (n.d.),
except during daily instrument calibrations (2-point; 0% and
saturated O2/Ar gas) and bottle sampling events. Discrete sea-
water was collected from the CTD rosette in Milli-Q rinsed air-
tight 300 mL Biological Oxygen Demand (BOD) bottles and
pumped directly through the MIMS to analyze dissolved O2

and Ar. These were always paired with sample collection for
microbial community structure (although not all microbial
community structure samples have a paired gas measure-
ment). To align continuous underway data with the discrete
underway collections for microbial community structure, we
calculated 6-h averages centered around the sampling time.
Missing values represent periods of missing or poorly cali-
brated data. Details regarding the MIMS system and bottle
sampling can be found in the Supporting Information
Text S2.

Theoretical concentrations of O2 and Ar at air saturation
([O2]sat and [Ar]sat) were calculated with the solubility equa-
tions from Garcia and Gordon (1992; 1993 – combined fit)
and Hamme and Emerson (2004), respectively, using tempera-
ture recorded at the MIMS inlet and salinity recorded by the
thermosalinograph. Comparing [O2]sat and [Ar]sat to 21 : 1%
synthetic air standard calibrations (Supporting Information
Text S2), we translated the seawater spectrometer readings
into total concentrations of [O2]meas and [Ar]meas in μmol
kg�1. Following the approach used in Eveleth et al. (2014),
these values were then used to extract only the biological
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component of total oxygen concentration, [O2]bio in μmol
kg�1 (Eq. 2).

O2½ �bio ¼
Ar½ �meas

Ar½ �sat
O2½ �sat ΔO2=Arð Þ ð2Þ

Seawater [O2]sat and [Ar]sat were calculated individually for
each sample using in situ practical salinity and potential tem-
perature. Positive (or negative) values of [O2]bio represent a
metabolic tracer for net oxygen production (or consumption),
or net productivity (or heterotrophy, respectively).

Random forest regressions
A RF regression model was used to extract the key microbial

predictors of [O2]bio in the upper water column
(“randomForest” package; Liaw and Wiener 2002). The model
was constrained to CTD samples collected from 122 m and
above, encompassing both the halocline and mixed layer, but
without potential impacts from the long residence times of O2

in deep water (n = 232; 112 with [O2]bio measurements,
although two datapoints were not included in model construc-
tion due to indicators of deep-water upwelling). In certain
models, feature selection using the Boruta algorithm (Kursa and
Rudnicki 2010) was applied prior to model construction. All
predictor variables were further evaluated following model con-
struction by comparing the increase of model mean squared
error (%IncMSE) which occurs when the variable is randomly
permuted (Liaw and Wiener 2002). To optimize our analysis,
eight RF models were tested using 70–30 stratified sub-sampling
techniques (Frick et al. 2025) and varying combinations of
microbial and environmental predictor variables (Supporting
Information Table S1). To extract the best taxonomic predictors
of [O2]bio, the final model was constructed using all 110 upper
water column CTD samples, with only feature-selected 16S and
18S ASV relative abundances as predictor variables. Internal
model accuracy for the final RF model was assessed through a
bootstrapped cross-validation analysis, randomly withholding
and re-predicting 10% of the data for 999 iterations (“rfUtilities”
package; Evans and Murphy 2018). We then used this model to
predict [O2]bio values in the surface ocean for periods of the
drift where non-paired CTD measurements were collected
(n = 120), as well as the daily underway sample collections for
microbial community structure (n = 236). “External” model
accuracy for the final RF model was assessed by comparing the
predicted discrete underway data to the integrated average of
continuous underway [O2]bio measurements (n = 212).

Results
Microbial community composition and Self Organizing
Map segmentation

Denoising and initial QC yielded a total of 4613 16S and
4638 18S ASVs across all samples after removing 655 suspected
organelle (16S) and 18 intracellular parasite (18S) sequences.

The prokaryotic community was dominated by bacteria, with
only 5.8% of the remaining 16S ASVs assigned to archaea. An
overview of total community composition (including chloro-
plast and parasite sequences) is presented in Supporting Infor-
mation Fig. S1.

The SOM analysis identified seven coherent 16S (Fig. 2a)
and six coherent 18S (Fig. 3a) microbial modes occurring
across the time series. Our NMDS analysis reaffirmed that both
the prokaryotic (Fig. 2b; PM) and eukaryotic (Fig. 3b; EM)
modes were composed of a distinctive community structure,
with little overlap in the 2D ordination space. In both ordina-
tions, distribution across the first two axes highlighted signifi-
cant separation by time and depth within the water column
(16S: r2 = 0.190 and 0.619 respectively, p = 0.001; 18S:
r2 = 0.333 and 0.434 respectively, p = 0.001). Temperature
(16S: r2 = 0.502, p = 0.001; 18S: r2 = 0.526, p = 0.001) and
salinity (16S: r2 = 0.645, p = 0.001; 18S: r2 = 0.524, p = 0.001)
were also significantly correlated. Latitude was only significant
for the eukaryotic community (16S: r2 = 0.0067, p = 0.095;
18S: r2 = 0.0841, p = 0.001). The PERMANOVA on the
resulting Bray–Curtis dissimilarity matrices confirmed that dis-
persion among groups was significantly different across modes
for both the 16S (p = 0.001; F[6, 671] = 163.39) and 18S com-
munities (p = 0.001; F[5, 640] = 87.62).

The 10 most abundant ASVs from each PM combined to
only 36 unique 16S ASVs, indicating some ASVs were in the
top 10 most abundant of more than one mode. Here, we com-
pare the average relative abundance of these top sequences
across all samples within each mode (Fig. 2c). PM-2 and PM-3
clustered together (Bray–Curtis dissimilarity) as deep water
modes and contained high abundances of ASVs identified as
Archaea, Proteobacteria, and Acidobacteria. PM-5 (early sum-
mer) and PM-7 (cosmopolitan) clustered together and con-
tained similarly high abundances of Archaea and Proteobacteria
taxa in addition to Glaciecola amylolytica. The other upper water
column cluster contained late summer and fall modes PM-1,
PM-6, and PM-4 and had high abundances of ASVs identified
to reference genomes of complex carbon degraders from
Flavobacteria, Proteobacteria, and Actinomycetia (Fig. 2c).
Higher order taxonomy for each PM is presented in Supporting
Information Fig. S2.

The 10 most abundant ASVs from each EM combined to
35 unique 18S ASVs. EM-1 and EM-6 both contained deep
water samples with high abundances of heterotrophic eukary-
otes and dinoflagellate genomes, although their community
composition was largely distinct at the ASV level. EM-6 was
occasionally sampled near the surface as well and additionally
contained relatively high abundances of diatom ASVs, which
overlapped with top species in other modes. Top ASVs in sur-
face fall and winter modes EM-3 and EM-4 were similarly non-
overlapping, except for a few specific dinoflagellate ASVs.
EM-4 had significantly higher abundances of diatom
sequences, particularly Attheya longicornis. The final cluster
contained EM-2 and EM-5, which were sampled above 100 m
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from summer into fall and contained overlapping top ASVs
assigned to a variety of dinoflagellate, diatom, and
prasinophyte reference genomes (Fig. 3c). Higher order taxon-
omy for each EM is presented in Supporting Information
Fig. S3.

The Kruskal–Wallis tests confirmed statistically significant
variability in the average environmental conditions between
modes (Supporting Information Fig. S4). Deep water modes
EM-1, EM-6, PM-2, and PM-3 persisted below the mixed layer
(Fig. 4) over the entirety of the drift and contained, on aver-
age, higher temperatures and salinities than all other modes
(Table 1). PM-3 and EM-1 corresponded to significantly higher
mean temperatures (Supporting Information Fig. S4;
Supporting Information Table S2) and their vertical

stratification in the upper water column closely followed that
of Atlantic-influenced water (Fig. 4), indicating that the varia-
tion in deep water community structure was likely related to
water mass influence. Estimated theoretical doubling times
indicated significantly faster growth rates for PM-6 and PM-1
than for PM-2 and PM-3. PM-6 also had the largest genome
size, while PM-7 had the smallest (Fig. 2c; Supporting Informa-
tion Table S2). Average Chl a concentration was highest in
EMs 2 and 5 and lowest in EMs 1 and 3 (Fig. 3c).

Total and biological oxygen concentration
Water column total dissolved oxygen concentrations

[O2]tot as calculated from the discrete BOD bottle samples
ranged between 184.69 and 550.21 μmol kg�1 and generally

Fig. 2. Segmentation of the prokaryotic community. (a) The Self Organizing Map (SOM) grid with individual samples (black dots) sorted into their
respective map units. Arranged as a toroid, units on opposite sides of the 2-D grid connect. K-means clustering of map units is indicated by color, with
thick lines surrounding each prokaryotic mode (PM). (b) Individual samples presented in the first two dimensions of a non-metric multi-dimensional scal-
ing ordination created from the Hellinger transformed relative abundances of 4613 16S ASVs (total community, not including suspected chloroplasts).
Samples are colored by their assigned PM, sized by collection depth in the water column, and shaped by collection timeframe during the MOSAiC Drift.
(c) PM community structure as represented by the 10 most abundant ASVs from each mode, when averaged across all their samples. Duplicate ASVs
(within the top 10 most abundant of more than 1 PM) are shown only once. Hellinger transformed 16S ASV relative abundances were scaled using a
z-score between 0 and 1. Bray–Curtis dissimilarity distances were used to cluster both ASVs (rows) and PMs (columns). Taxonomic IDs were assigned
using the paprica pipeline, representing the closest relative among Refseq genomes and placement proportion. Columns are additionally colored by aver-
age predicted minimum doubling time (in hours) and average genome size (in base pairs) across each PM community.
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followed the pattern of [O2]tot measured by the CTD sensors
with an average deviation of �38.84 � 53.46 μmol kg�1

(Supporting Information Fig. S5). Water column [O2]bio
(including transit stations) ranged between �72.73 and
29.51 μmol kg�1. [O2]bio was generally near 0 or negative, indi-
cating oxygen consumption (net respiration) except in early
spring and late summer where oxygen accumulation (net pho-
tosynthesis) was observed (Fig. 4). Below 11 m, negative [O2]bio
values indicated net heterotrophic conditions for most of the
upper water column, with stronger undersaturation beneath
the mixed layer (approx. 25 μmol kg�1 additional consumption;
Fig. 4). Net heterotrophic conditions persisted across the
entirety of the deeper water column (below 200 m) with the
lowest [O2]bio values occurring in the deepest water of the
Amundsen Basin (Supporting Information Fig. S6) or with

shoaling near bathymetric features (Fig. 4). Surface values (11 m
and above) from the CTD rosette and averaged values from the
underway system followed similar trends in time and space
(Fig. 5c). Replicate BOD bottles indicated a measurement stan-
dard deviation of, on average, � 1.85 μmol kg�1.

Random forest regressions
Test model results indicated superior model performance

when using only the feature selected ASVs compared to all
other predictor variable combinations (Supporting Informa-
tion Table S1). After combining all samples to train the final
comprehensive ASV-based RF model (Fig. 5a), Boruta feature
selection identified 128 ASVs (79 16S, 49 18S; Supporting
information Table S3) as being statistically significant in mak-
ing model predictions and were included as predictor variables

Fig. 3. Segmentation of the eukaryotic community. (a) The Self Organizing Map (SOM) grid (6 � 6) with samples (black dots) sorted into their respec-
tive map units. Arranged as a toroid, units on opposite sides of the 2-D grid connect. K-means clustering of map units is shown by color and thick lines
surrounding each eukaryotic mode (EM). (b) Individual samples are presented in the first two dimensions of a non-metric multi-dimensional scaling
(NMDS) ordination created from the Hellinger transformed relative abundances of 6870 18S ASVs (total community, not including suspected intracellular
parasites). Samples are colored by their assigned EM, sized by collection depth in the water column, and shaped by collection timeframe during the
MOSAiC Drift. (c) EM community structure is represented by the 10 most abundant ASVs averaged across all samples within each mode. Duplicate ASVs
(within the top 10 most abundant of more than one EM) shown only once. Hellinger transformed 18S ASV relative abundances were scaled using a
z-score between 0 and 1. Bray–Curtis dissimilarity distances were used to cluster both ASVs (rows) and EMs (columns). Taxonomic IDs were assigned
using the paprica pipeline, representing the closest relative among PR2 genomes and placement proportion. Columns are additionally colored by average
chlorophyll a (Chl a) concentration for each EM.
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in the final model. Top predictors (%IncMSE of greater than
4, n = 25) included 10 bacterial sequences, 4 archaeal
sequences, and 11 total eukaryotic sequences, with 9 assigned
to dinoflagellate species (Fig. 6). The ASV with the highest %
IncMSE (7.42) was assigned to Syndiniales (Dino Group
1, clade 1), followed by the next four top predictors of an

unidentified species of the Rhizaria order Chaunacanthida (%
IncMSE = 7.17), Actinomarinicola tropica (%IncMSE = 6.41), an
unidentified Bacteria genome with an NCBI BLAST 100% ID
to Nitrospinaceae (%IncMSE = 6.12), and an unidentified
Eukaryote genome with a 90% NCBI BLAST identity to an
uncultured dinoflagellate (%IncMSE = 5.49). Overall, archaea

Fig. 4. Timeseries of upper water column biological oxygen ([O2]bio in μmol kg�1) and taxonomic mode during the MOSAiC Drift. Interpolated mea-
surements for [O2]bio are shown with (a) Prokaryotic Mode or (b) Eukaryotic Mode along the upper 200 m of the MOSAiC Drift. Panel (c) focuses on the
upper 130 m and includes predicted values for [O2]bio from the final random forest model. In all panels, points represent water collections for microbial
community structure. In panels (a) and (b) they are colored by taxonomic mode. Full colored points (a, b) or black points (c) indicate paired DNA and
[O2]bio measurements. Points encircled by white (a, b) or colored white (c), indicate no matching [O2]bio measurement, or predicted values (c). All inter-
polations were made using Multilevel B-spline approximation (Finley et al. 2022). Transit data during periods of ship relocation are not shown. Vertical
blue lines represent geographic transitions across the Arctic Ocean basins and are indicated by name at the top of the chart. The black solid line repre-
sents mixed layer depth, the dashed black line indicates the top end of Atlantic influence, determined by where temperature begins to increase with
depth, and the dashed gray line indicates the upper end of the Artic Atlantic Water mass (zero-degree isotherm).
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were over-represented in the top predictors, making up 11%
of the feature selected ASVs compared to only 6% of the over-
all prokaryotic community composition. Seventy-one percent
of the eukaryotic taxa within the feature selected predictors
were dinoflagellates, with another 16% assigned to protists
with known heterotrophic (e.g., phagotrophy) behavior.

The cross-validation analysis of this model indicated a
median root mean squared error of 4.13 μmol kg�1

(Supporting Information Fig. S9). When this model was
applied to an independent validation dataset (underway
[O2]bio), the model had poorer performance, with a median
absolute error of � 5.77 μmol kg�1 and a root mean squared
error of 10.93 μmol kg�1 with a trend toward undersaturation
of the measured values (Fig. 5c). However, overall trends were
retained within the water column predictions, and the appli-
cation of the model to community structure data lacking
MIMS observations allowed us to expand the dataset from
112 upper water column CTD samples to 238 and cover the
critical fall–winter transitional period (Fig. 4c).

Discussion
In this study, we identify the biological controls on NCP

(proxy [O2]bio) using a unique, year-long time series of paired
microbial and biogeochemical data over a spatially and tem-
porally variable drift track across the central Arctic Ocean. Our
results showed that the magnitude and trophic signal of water
column biological oxygen utilization and microbial commu-
nity structure were tightly coupled. We demonstrated that
microbial community structure outperforms physical predic-
tors in a random forest model to predict [O2]bio (Supporting

Information Table S1), although both measurements showed
indicators of environmental shaping (Fig. 4; Table 1). Top pre-
dictors suggest strong bottom-up controls of NCP from the
heterotrophic community (Fig. 6), but more experimental
research is needed to determine the difference between correl-
ative and causative effects.

Depth resolved [O2]bio over the MOSAiC drift
[O2]bio in the water column remained close to 0 or net het-

erotrophic at depth for almost the entirety of the MOSAiC Drift
(Fig. 4). Even during summer, ΔO2/Ar in the surface ocean
(< 11 m) was, on average, only oversaturated by 0.8%. Previous
studies have found spatially variable, but on average higher
ΔO2/Ar supersaturation (3.1 � 2.9%; n = 9157) in surface waters
of the Eurasian Arctic (Eveleth et al. 2014; Ulfsbo et al. 2014).
However, most previous studies only report surface water data
from July–October, which is the period in our data that showed
the greatest [O2]bio accumulation from in situ production and
ice melt (Fig. 4). As expected, such net phototrophic conditions
would not persist during the spring/winter periods, but our data
highlight that limited seasonal data on high Arctic net produc-
tion cannot provide accurate estimates on an annual time scale.
It is likely that external carbon sources (Oziel et al. 2025), such
as terrestrial input from rivers (as indicated by PM-6) or ice melt
(as indicated by PM-5 and EM-2), would be required to sustain
the levels of remineralization observed beneath the mixed layer
over the course of the drift (Fig. 4).

Extremely negative [O2]bio signals in the upper water col-
umn (e.g., < �60 μmol kg�1 at 100 m on July 15th; Fig. 4) can
be explained by tidal influences (Rabe et al. 2022) or enhanced
upwelling caused by turbulence from bottom topography as

Table 1. Summary characteristics for prokaryotic (PM) and eukaryotic (EM) modes.

Mode

Seasonal/
spatial

dominance

Estimated mean (16S)

Mean
Chl a (μg L�1)

Mean
temp (�C)

Mean
salinity
(g kg�1)

Primary
dates

observed
Primary depths

observed
Genome

size (106 bp)
Doubling
time† (h)

PM 1 Summer bloom 3.13 � 0.28 5.68 � 0.53 0.61 � 0.27 �1.60 � 0.16 32.62 � 1.08 Jul Surface (< 50 m)

PM 2 Deep water 3.05 � 0.22 7.44 � 0.79 0.001 � 0.00 �0.09 � 0.81 34.91 � 0.07 Year-round Deep (> 500 m)

PM 3 Atlantic water 2.99 � 0.12 8.02 � 0.22 0.01 � 0.008 0.43 � 1.15 34.67 � 0.25 Year-round Mid (100–500 m)

PM 4 Winter surface 2.78 � 0.32 6.43 � 0.66 0.26 � 0.19 �1.51 � 0.61 31.39 � 1.56 Sep–Dec Surface (< 50 m)

PM 5 Summer surface 3.07 � 0.27 6.29 � 0.68 0.55 � 0.28 �0.82 � 1.59 33.94 � 0.37 Jun–Jul Surface–mid (< 100 m)

PM 6 Transpolar Drift* 3.43 � 0.33 4.66 � 0.71 0.40 � 0.21 �1.65 � 0.08 30.77 � 0.90 Aug, Dec Surface (< 50 m)

PM 7 Winter–spring 2.70 � 0.18 7.51 � 0.39 0.03 � 0.03 �1.78 � 0.22 33.91 � 0.53 Feb–may Surface–mid (< 100 m)

EM 1 Atlantic water 3.0 � 0.17 7.99 � 0.50 0.007 � 0.008 0.90 � 0.75 34.80 � 0.15 Year-round Mid–deep (> 150 m)

EM 2 Late summer bloom 2.9 � 0.33 6.04 � 0.64 0.45 � 0.22 �1.51 � 0.55 31.32 � 1.70 Jul–Sep Surface (< 50 m)

EM 3 Winter–spring 2.7 � 0.17 7.59 � 0.31 0.03 � 0.02 �1.63 � 0.55 33.93 � 0.52 Mar–Apr Surface–mid (< 100)

EM 4 Fall bloom 2.7 � 0.32 6.71 � 0.75 0.11 � 0.15 �1.43 � 1.06 32.54 � 0.48 Nov–Dec Surface (< 20 m)

EM 5 Summer bloom 3.0 � 0.31 6.44 � 1.09 0.37 � 0.33 �1.30 � 1.02 33.56 � 1.27 May–Jun Surface–mid (< 100 m)

EM 6 Deep water 3.1 � 0.24 7.20 � 0.97 0.26 � NA �0.58 � 0.46 34.73 � 0.92 Year-round All (10–4000 m)

*Transpolar Drift here refers to the advective pathway of low salinity, river-rich surface water of Siberian origin.
†Doubling time here refers to theoretical doubling times as estimated from codon usage (Weissman et al. 2021).
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the ship passed over the western slope of the Yermak Plateau
layer (Schulz et al. 2024). The strongly positive [O2]bio signal
in the Amundsen basin during early spring is also likely linked
to physical rather than biogeochemical processes given the
decoupling from observed changes in community structure
(Fig. 4), low light levels, and predicted undersaturation of
these samples from our ASV-generated RF model (Fig. 5).
Potential explanations include gas entrapment beneath high

winter sea ice extent (Nicolaus et al. 2022) or frontal dynamics
due to crossing bathymetric features, that is, the Gakkel ridge
(Eveleth et al. 2014; Ulfsbo et al. 2014).

Seasonal and spatial context from water column microbial
community structure

Prokaryotic mode and EM distribution corresponded with
observed oceanographic conditions during MOSAiC, especially

Fig. 5. Upper water column random forest (RF) model construction and external dataset validation. (a) 1 : 1 comparison of predicted [O2]bio and mea-
sured [O2]bio values with a linear regression from the RF training dataset comprised of all suitable paired surface ocean (< 122 m) DNA and [O2]bio mea-
surements collected from the CTD rosette. (b) 1 : 1 comparison of predicted and measured [O2]bio values with a linear regression from the validation
dataset comprised of all integrated daily underway [O2]bio values generated from 6-h averages around the DNA sampling time. (c) Time-series view of
the predicted (triangles, dashed) and measured (circles, solid) values for both the underway system (cyan) and surface (≤ 11 m) CTD measurements
(dark blue).
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vertical stratification within the water column (Fig. 4). This
supports previous studies (Carter-Gates et al. 2020; Priest
et al. 2023), which suggest that water mass influence plays an
important role in the environmental structuring of taxonomic

distribution in the pelagic Arctic Ocean. For example, PM-3
appeared almost exclusively below the upper boundary of Arc-
tic Atlantic Water influence and reflected the average environ-
mental characteristics of this water mass, including high

Fig. 6. Heatmap of the key microbial predictors for upper water column biological oxygen utilization. Scaled relative abundance (z-score between 0 and
1) of predictor variables (ASVs) with a percent Increase in Mean Squared Error (%IncMSE) ≥ 4% across all model training samples (n = 110). Samples (col-
umns) are colored by biological oxygen ([O2]bio) concentration in μmol kg�1. Bray–Curtis dissimilarity distances were used to cluster ASVs (rows), which
are labeled both by Domain (color) and the highest resolved paprica taxonomic placement (closest relative among RefSeq or PR2 genomes) with its
rounded %IncMSE included in parentheses.
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temperature and salinity (Table 1). Atlantic-influenced EM-1
was not present above the true demarcation of the Arctic
Atlantic water mass between 100 and 150 m (Fig. 4). The
strong density gradient of the halocline likely acted as a physi-
cal barrier for vertical exchange and dispersal of microbial
communities, indicating that populations above and below
this barrier developed independently of each other.

Disentangling seasonal and spatial (water mass driven) suc-
cessional influences in the upper ocean was more compli-
cated. PM-6, dominated by the freshwater indicator taxa
Actinobacter (Supporting Information Fig. S2), was observed
briefly in December 2019 and then again in late August of
2020. At those times, the MOSAiC floe was in waters
influenced by the Transpolar Drift as indicated by increased
river water fraction (Laukert et al. 2025) and reduced δ18O iso-
topes (Schulz et al. 2024). The presence of Actinobacter, puta-
tive complex carbon degraders (Fig. 2c), and a low PM average
salinity (Table 1) suggest a community spatial signal driven by
fresh riverine input.

Seasonal mode composition was largely defined by metabolic
strategy. In Fall 2019, the community composition (Fig. 3) and
elevated Chl a concentrations of EM-4 (Table 1) indicate the
remnants of an Attheya-rich under-ice bloom with a cop-
iotrophic heterotrophic prokaryotic community (PM-4) and
higher capacity for NCP (mixed layer [O2]bio supersaturation;
Fig. 4). Enhanced mixing in early March led to the entrainment
of deeper water masses into the mixed layer. This transported
the previously subsurface heterotroph/dinoflagellate dominated
eukaryotic EM-3 and primarily chemotroph dominated PM-7 to
the surface, which persisted in the mixed layer until crossing
over the Gakkel Ridge (EM-3) or Yermak Plateau (PM-7). While
there could be some spatial component, the gradual transition
between EM-3 and EM-5 observed in April also corresponded to
the return of sunlight and a surprisingly early exponential
increase in Chl a that already started during EM-3 prevalence
(Hoppe et al. 2024). The top ASVs between EM-3 and EM-5
showed a great deal of community overlap, with the main differ-
ence being a shift from dinoflagellate dominance toward
increased phototrophic species, for example, a diatom sp. of
Corethron (Fig. 3). This, in addition to the continuity of PM-7
and persistence of EM-5 well into the Fram strait, supports
homogeneous selection pressures across basins with a seasonally
driven vernal evolution within the eukaryotic community.

Our analyses suggest that summer succession in the pro-
karyotic community was driven by both season and substrate
availability. The accumulated production signal (positive
[O2]bio) from summer bloom EM-5 peaked in July. The pro-
karyotic summer community shifted in response to these
bloom conditions (Fig. 4). Pre-bloom summer mode PM-5 was
enriched in Alphaproteobacteria with top ASVs assigned to
terrestrial taxa (Fig. 2), potentially from sediments picked up
during ice formation melting out of the ice (Nicolaus
et al. 2022). Bloom summer mode PM-1 contained high abun-
dances of particle-associated taxa (Fig. 2), highlighting organic

matter availability, here derived from either ice melt (Fig. 6) or
in situ phytoplankton growth (Fig. 4) as a determining factor
for bacterial taxonomic composition (Underwood et al. 2019;
Piontek et al. 2021) over the MOSAiC year. In mid-July, EM-5
was gradually succeeded by EM-2, which had a greater abun-
dance of phototrophic pico-plankton (i.e., Micromonas polaris)
and ice-associated Fragilariopsis sublineata. These taxa are not
surprising in low salinity waters (Table 1) and likely indicative
of cryo-pelagic coupling related to ice melt and breakup dur-
ing this time (Nicolaus et al. 2022).

Microbial community structure as a predictor for net
community production

The results from our community-based RF model highlight
the key role microbial community structure and metabolic
balance play in determining water column NCP. Including
physical parameters within the test RF models did not signifi-
cantly improve model accuracy (Supporting Information
Table S1), underscoring the strong predictive relationship
between community composition and [O2]bio. The regions
where our model performed poorly (significant under-
prediction of measured values from early spring in the valida-
tion dataset; Fig. 5) were also those that were most likely to be
impacted by residence time driven decoupling in tracer [O2]bio
and active biogeochemical cycling. Another explanation for
the general trend in underestimation of the underway [O2]bio
data, and limitation of the CTD RF model, is that the reduced
temporal and vertical resolution of CTD casts led to an under-
representation of surface (< 15 m) water samples in the model
training data (Supporting Information Table S1). To better val-
idate and constrain our RF model, we suggest future collec-
tions of similarly analyzed depth discrete paired DNA and O2/
Ar data in similar geographic locations to compare to and/or
build a better predictive model constrained by multiple years
of data. The more training data, the better suited such an RF
model will be to predicting [O2]bio in the highly heteroge-
neous Arctic Ocean.

Prokaryotic processes in particular play an important role in
the mechanisms driving net carbon export in the pelagic ocean
(Worden et al. 2015). Our results highlight this, with over half
of the top predictor taxa in our final RF model belonging to pro-
karyotes (Fig. 6). Out of the eukaryotic ASVs which were feature
selected as important [O2]bio predictor taxa, the majority were
dinoflagellates (potentially mixotrophic) or heterotrophic pro-
tists (e.g., Telonema). A similar phenomenon was observed in
Guidi et al. (2016), which examined planktonic networks driv-
ing carbon export in the subtropics and found that the driving
eukaryotic taxa in subnetworks correlated with carbon export
were primarily dinoflagellates. Other studies from more
nutrient-rich environments, such as Lin et al. (2017) from the
Southern Ocean and Wang et al. (2018) from the mid-Atlantic
Bight, found a mix of both autotrophic and heterotrophic taxa,
which were good predictors and/or strongly correlated with NCP
estimates. Many of these, however, were associated with bloom
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conditions and when bloom samples were excluded from analy-
sis in the Wang et al. study, only cryptophytes and bacteria
remained associated with NCP rates.

When looking at the relative abundance across samples of
top predictor sequences in our RF model, three distinctive and
ecologically coherent groups of taxa emerge (Fig. 6). The top
predictors associated with samples with high net production
[O2]bio sample group were primarily made up of sequences
assigned to taxa directly associated with CO2 fixation, for
example, the dinoflagellate Karlodinium veneficum, which was
dominant in late summer mode EM-2, or taxa associated with
hydrocarbon degradation, for example, Croceimicrobium hydro-
carbonivorans and Methylophaga (Gutierrez and Aitken 2014).
Top predictors associated with the net neutral [O2]bio sample
group were primarily chemotrophs highly represented in win-
ter surface PM-7 or motile heterotrophic taxa. Top predictors
in samples with strong oxygen consumption ([O2]bio) were
parasitic dinoflagellates and ASVs assigned to the domain
Archaea.

Chemosynthetic archaea were generally overrepresented
in top predictor taxa with a representative in each of the
three “predictor groups” (Fig. 6). In previous studies, Archaea
taxa were not clearly associated with, or assessed in relation
to, NCP rates. However, most assessed only surface water
within the mixed layer. Our depth-discrete water column
data therefore provide a new insight into the predictive
capacity of a less abundant microbial group. While predictive
capacity does not necessarily equal mechanistic importance,
several other recent studies have emphasized the role of che-
moautotrophic Archaea (in addition to Bacteria) in altering
carbon pools (Bayer et al. 2023) and regulating organic car-
bon export (Dithugoe et al. 2023) in the water column.
Therefore, it is highly likely that the relative abundance of
these key prokaryotic taxa may closely track changes in oxy-
gen production and consumption rates, suggesting process-
level biological mechanisms that directly influence the over-
all net metabolic balance and carbon sequestration potential
in the Arctic Ocean.

Conclusions
Altogether, our findings highlight the influence of micro-

bial community structure and biogeochemical potential on
the net trophic state in the central Arctic Ocean. Microbial
community structure (SOMs) displayed a strong seasonal
and/or substrate-driven signal in the upper ocean but was
oceanographically constrained at depth. These microbial sig-
nals were reflected in the observed biogeochemistry, and our
upper ocean community structure-driven RF model predicted
[O2]bio with high fidelity. By specifically developing our RF
model using only unique amplicon sequence predictor vari-
ables, we were able to directly highlight the crucial role
microbes play in regulating this critical NCP precursor and
assess potential discrepancies/shifts in the dominance of its

biological and environmental drivers. Given the expensive
nature of measuring such chemical rates directly, there is
additional utility in these methods for constructing more
complete biogeochemical datasets to accompany microbial
studies.

Most of the key predictor ASVs from our RF model were
assigned to potentially mixotrophic or heterotrophic taxa,
indicating O2 consumption as a dominant component in con-
straining total NCP within the water column. This is
supported by recent modeling studies, which have predicted
unexpected decreases in Arctic biological carbon pump effi-
ciency due to accelerated remineralization rates under climate
change scenarios (Oziel et al. 2025). While there are other O2

loss mechanisms that can impact the integrated [O2]bio signal
and were not measured directly in conjunction with our data
(such as zooplankton respiration and grazing), our results still
show that microbial community structure holds at least pre-
dictive power for this signal.

[O2]bio is closely related to atmospheric CO2 uptake, which
is strongly mediated by biological CO2 consumption in the
open water season (Juranek et al. 2019; Mathis et al. 2024).
Large uncertainties in future CO2 uptake by the Arctic Ocean
are partly due to uncertainties in how trophic productivity
will evolve with changes in the sea ice and seawater condi-
tions that shape microbial community structures (Campbell
et al. 2022b). This and other future work toward understand-
ing the relationship between microbial community structure
and biological oxygen utilization will therefore be important
to accurately assessing the future of the Arctic Ocean
carbon sink.
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