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Proxy-based reconstructions and climate model simulations of Holocene global annual mean tempera-
tures exhibit divergent trends, leading to the well-known “Holocene temperature conundrum (HTC)".
This discrepancy is most pronounced in the mid-to-high latitudes of the Northern Hemisphere (NH)
and has been attributed to either proxy seasonal bias or deficiencies in climate models. Paleoclimate data
assimilation (PDA), which integrates proxy records with climate model simulations, provides an
advanced method for generating global seasonal temperature reanalysis datasets for the mid-Holocene
(MH). Assimilated results indicate that MH Eurasian temperatures are largely independent of the choice
of model priors and exhibit significant spatial heterogeneity. Compared to the pre-industrial (PI) period,
the MH is characterized by winter and annual mean warming in Europe and high-latitude Eurasia, while
the rest of Eurasia experiences cooling. However, this spatial heterogeneity is not well represented in
model simulations due to a pronounced winter cooling bias at high latitudes, likely resulting from inad-
equate representations of vegetation and sea ice feedback mechanisms. As Eurasian proxy records are
predominantly concentrated in Europe, this regional imbalance introduces a warm bias in reconstructed
winter and annual temperatures intended to represent broader Eurasian temperature changes. These
results suggest that the HTC may stem from both the uneven spatial distribution of proxy records and
the incomplete representation of internal climate feedbacks in current models.
© 2025 Science China Press. Published by Elsevier B.V. and Science China Press. All rights are reserved,
including those for text and data mining, Al training, and similar technologies.
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1. Introduction debate persists regarding changes in global mean surface temper-
ature (GMST) throughout the Holocene. Proxy-based reconstruc-

Characterizing the temperature evolution throughout the cur- tions indicate an early to mid-Holocene (MH) thermal maximum,

rent interglacial period (the Holocene, beginning 11,700 years
ago) is essential for understanding the forcings and feedback
mechanisms of the Earth system. This contextualizes post-
industrial global warming and contributes to reducing uncertain-
ties in future climate projections [1]. However, a long-standing
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occurring after the final retreat of the Northern Hemisphere (NH)
ice sheets and coinciding with peak NH summer insolation, fol-
lowed by a cooling trend until the pre-industrial (PI) period [2,3].
In contrast, climate models suggest a long-term warming trend
attributed to the retreat of the ice sheets and increasing concentra-
tions of greenhouse gases [4]. This discrepancy between proxy data
and climate models, or “Holocene temperature conundrum (HTC)”,
hinders a mechanistic understanding of Holocene climate change
and undermines confidence in both proxy reconstructions and
climate simulations [5,6].
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Seasonal bias in proxy reconstructions has been proposed as a
significant factor contributing to the HTC [7]. Specifically, the
reconstructed seasonal temperatures are contingent upon the
methods employed to empirically convert proxy records into tem-
perature estimates. This phenomenon has been evident in the win-
ter temperatures derived from pollen records [8,9]. Additionally,
there is significant variability in the simulated MH temperature
seasonality among models that apply similar climate forcing
[10,11], as well as within individual models that operate under dif-
ferent boundary conditions (e.g. vegetation types [12]). This vari-
ability introduces substantial uncertainty regarding seasonal
temperature changes throughout the Holocene, thereby complicat-
ing efforts to resolve the HTC.

Paleoclimate data assimilation (PDA) facilitates the reconstruc-
tion of seasonal temperatures by integrating both the “observed”
information derived from proxy records and the constraints
imposed by climate model physics [13-15]. PDA offers dual advan-
tages for reconstructing paleo-temperatures. Firstly, the approach
is constrained by observations, which mitigates the effects of
model deficiencies. Secondly, it is constrained by physical princi-
ples, thereby addressing the limitations associated with the
uneven and restricted distribution of proxy records by extrapolat-
ing climate reconstructions to a global scale. Theoretically, the
results obtained through assimilation should surpass those derived
from either reconstruction or simulation alone, a hypothesis that
has been supported by previous research [13,16,17]. However,
PDA results are not without limitations. For instance, the effect
of different model priors on PDA results remains ambiguous, rais-
ing critical questions regarding the reliability of the assimilated
global mean temperature changes throughout the Holocene [18].

Here, we apply the PDA method by integrating global marine
temperature records with two climate simulation outputs forced
by different vegetation configurations during the MH epoch. This
produces two reanalysis datasets depicting MH global annual and
seasonal surface air temperature (SAT) anomalies relative to the
late Holocene (LH). Our results indicate that, in only a few regions,
such as Eurasia, the assimilated temperatures are largely indepen-
dent of various model priors. Furthermore, comparing proxy recon-
structions, model simulations and PDA results reveals a systematic
winter cooling bias in climate models, particularly in Europe and
high-latitude Eurasia, which leads to an overestimation of the spa-
tial homogeneity of winter and annual mean SAT changes across
Eurasia. Additionally, the assimilated results indicate significant
spatial biases in the temperature changes reconstructed from Eur-
asian records, primarily due to the predominance of European
records in representing Eurasian temperature changes.

2. Materials and methods
2.1. Assimilated marine records and forward models

The study incorporated global marine temperature records into
the PDA process, while deliberately excluding terrestrial records.
This exclusion is due to the two predominant frameworks utilized
in current PDA methods: one framework assimilates temperature
values reconstructed from proxy records, while the other directly
incorporates raw proxy values. The former approach introduces
an additional layer of uncertainty in the PDA results, stemming
from calibration errors that occur during the conversion of proxy
values into temperature values. Therefore, the latter framework
was selected, which directly assimilates raw proxy values. This
approach necessitates that the proxies possess forward models.
Forward models are defined as linear or nonlinear regression mod-
els that accept various environmental variables as inputs (e.g., sea
surface temperature (SST) and sea surface salinity (SSS)) and
subsequently predict the corresponding proxy values. Currently,
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forward models for marine proxies are well-established, whereas
the majority of terrestrial records lack reliable forward models.
This limitation restricts the incorporation of terrestrial records
within the proposed PDA framework. This study utilized a SST
proxy dataset in Osman et al [13]. This dataset comprises four

types of proxies: alkenone U’§7 the TetraEther index of 86 carbons
(TEXgg), the elemental ratio of magnesium to calcium in planktic
foraminifera (Mg/Ca), and the oxygen isotopic composition of
planktic foraminifera (6'80). These proxies were selected due to
the availability of associated Bayesian forward models, which are
critical to the proposed PDA scheme. The research objective is to
reconstruct the MH (defined as 5.5-6.5 ka in this study) tempera-
ture anomaly field relative to the LH (defined as 0-1 ka in this
study). A total of 260 and 170 proxy records were selected for
the MH and LH periods, respectively (Fig. S1 online). When multi-
ple data points from a single record were present within the MH or
LH periods, these values were averaged. Importantly, proxy sea-
sonality is explicitly accounted for in the proposed PDA framework
based on these forward models. Each marine organism has a speci-
fic temperature range that optimally supports its survival. For
example, certain organisms can only thrive during the warm sea-
son, resulting in proxies derived from these organisms reflecting
warm-season temperatures (i.e., warm seasonal bias). However,
within the proposed PDA framework, the Bayesian forward models
are capable of selecting the average temperature of the months
that fall within the optimal temperature range for the organisms
(i.e., as provided by model priors) to predict the proxy values.
These predicted values are then compared with the actual proxy
values to update the model priors. As environmental temperatures
fluctuate, the months selected will adjust accordingly, effectively
mitigating the effect of proxy seasonal biases. Further details
regarding the Bayesian forward models can be found in original
studies [19-22].

2.2. Eurasian seasonal temperature records

This research conducted a comparative analysis of the assimila-
tion results with independent seasonal temperature proxy records
in Zhang et al. [23]. This multiproxy temperature dataset is both
comprehensive and of high quality, comprising a total of 579
annual, 465 summer, and 258 winter temperature records. These
records were selectively sourced from data-sharing initiatives
(e.g., National Oceanic and Atmospheric Administration (NOAA)
and Publishing Network for Geoscientific & Environmental Data
(PANGAEA)), previous compilations (e.g., Temp12k database), and
individual studies. Each record within the dataset underwent a rig-
orous evaluation and screening process to ensure quality. Only
those records with sample resolutions of less than 400 years and
covering periods exceeding 5000 years, including the Common
Era, were retained. In this study, similar to the assimilated marine
records, Eurasian terrestrial temperature records were specifically
selected to encompass both the 0-1 ka BP and 5.5-6.5 ka BP peri-
ods. This selection yielded 113 records of annual mean tempera-
ture, 170 records of summer temperature, and 88 records of
winter temperature. Consistent with existing studies [2,8,9], the
research employed a spatial gridding technique with a resolution
of 5° x 5°. In this approach, all proxy records within each 5° x 5°
grid were averaged to mitigate the disproportionate effect of den-
sely clustered records in certain regions (Fig. S11 online). This
method ensures a more robust and unbiased analysis.

2.3. Climate model simulations

The climate model priors utilized in the PDA process are derived
from pre-existing iCESM1.2 simulations [12]. These priors include
time-slice simulations for both the PI period and the MH epoch
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(6 ka BP). For the MH, two snapshot simulations with distinct veg-
etation conditions were employed: one with PI vegetation cover
(CTL scenario) and the other featuring greening in the Sahara and
Arctic regions (VEG scenario). Specifically, the VEG scenario modi-
fies the African Sahara by replacing bare ground desert with 100%
shrub cover between approximately 10°N and 25°N, and with 100%
C,4 grass between 25°N and 35°N. Additionally, it transforms the
Arctic by substituting all C3 grass north of 50°N with boreal forest.
In addition to the iCESM model priors, MPI-ESM model priors were
also used to evaluate the impact of different climate models on
assimilation results. These MPI-ESM priors are sourced from pre-
existing simulations using the MPI-ESM-wiso model [24]. Detailed
descriptions of the simulation configurations and results are avail-
able in previous studies [12,24]. In a standard data assimilation,
the time span of the prior ensemble typically aligns with that of
the proxy records. For example, a millennial average proxy would
be used to update a millennial average prior. However, due to the
limited duration of simulated years available in the climate model
(e.g., 800 years for the PI simulation, 400 years for the 6ka-CTL sim-
ulation, and 800 years for the 6ka-VEG simulation in the iCESM
model), it is necessary to utilize a different time average for the
model prior. Consequently, a 10-year average was selected as the
longest feasible time interval while ensuring a sufficient number
of ensemble members for assimilation (40 members). Previous
investigations into the time averaging of model states indicated
that once the average duration exceeds an interannual timescale,
the patterns observed in the assimilated fields exhibit minimal
sensitivity to the length of the average [16]. Therefore, the
10-year averaged model priors are considered a reasonable choice.
For both the PI and MH simulations, this study randomly selected
400 years of modeling results and subsequently calculated a
10-year average, resulting in three 40-member prior ensembles
(for PI, 6ka-CTL, and 6ka-VEG). These prior ensembles are regarded
as representing the climatic states of the LH period and the MH
period under the two vegetation conditions.

2.4. Paleoclimate data assimilation

The research utilized an offline ensemble square root Kalman
filter method to conduct the PDA experiment, following the
methodology described in Ref. [13,16]. For a comprehensive math-
ematical description, please consult these prior studies. Briefly, this
method integrates simulated climate fields derived from climate
models (“prior”) with new information obtained from proxy obser-
vations (“innovation”) to generate updated assimilated climate
fields (“analysis”). The fundamental equation of this approach is
expressed as follows:

(1)

Xprior 1s @an N x M matrix of prior climate states, where dimen-
sion N contains the model outputs for various variables (i.e., SST
and SAT) concatenated as a vertical vector (“state vector”), and
dimension M represents the number of state vector ensemble
members (M = 40). The overbar in all cases denotes the average
across the ensemble dimension.

)}analysis = )zprior +K (yobs - ?est)

Yobs — Yest is the innovation, representing the novel information
obtained from the observations. y,,, is a P x 1 vector consisting of P
proxy observations. Y.; is a P x M matrix containing the corre-
sponding set of P proxy estimates, which are generated from the
model output from each M state using Bayesian forward models
at the same locations.

K is a N x P matrix as a weighting factor (“Kalman gain”), which
can be determined as follows:

K = Wi © cov(Xprior, Yest) * [Wa © COV(Yest, Yest) +R] ', 2)
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where “cov” denotes the covariance expectation; P x P matrix R is
the prescribed error covariance associated with each proxy obser-
vation. R is diagonal and user-defined. In this study, we use error
estimates derived from Bayesian forward models, with distinct
scaling factors applied to each proxy type, following the method-
ology in Osman et al. [13]. W; and W, are the localization radius
weights; © is the element-wise multiplication. Covariance localiza-
tion was applied to the assimilation process to mitigate spurious
correlations between distant regions. Following Ref. [13,25], a
localization radius of 24,000 km was used, with localization
weights determined by the distance-dependent Gaspari-Cohn
function [25]. To compute the MH global annual and seasonal
temperature anomaly fields relative to LH, Xana,ysis was calculated
separately for both periods. For the LH, the assimilation process
proceeded as follows: first, the 10-year averaged simulated fields
for the LH were regridded to a 1° uniform grid to construct the
prior ensemble (including SAT, SST, SSS, and §'20,,, fields at both
monthly and annual resolutions). Second, 80% of proxy records
from the LH period were randomly selected for assimilation, while
the remaining 20% were withheld for internal statistical validation.
Xanayysis was then determined using Equation (1). Third, this process
was repeated 500 times to generate a 500-member ensemble of
analysis fields. This Monte Carlo procedure facilitated the quantifi-
cation of uncertainty associated with proxy selection. A similar
approach was applied to the MH period, generating 500-member
Xam,ys,-s ensembles under different vegetation scenarios. Subse-
quently, 500-member MH global annual and seasonal temperature
anomaly fields relative to the LH were computed for each vegeta-
tion scenarios. The 50th percentile of these ensembles was then
selected as the final analysis field.

Although both the marine proxies and the PDA method
employed in this study are primarily based on previous research
[13,16,26], the research hypothesis and focus in this study are
novel and different. Specifically, the effect of various model priors
on PDA results is evaluated, identifying regions that exhibit prior
independence and are primarily constrained by assimilated proxy
data. More importantly, we capitalize on the distinct advantages
of PDA to reconstruct temperature seasonality, which is central
to addressing HTC.

2.5. Overlapping coefficient

To assess the significance of the discrepancies between PDA
results under different model priors, we utilized the overlapping
coefficient [27]. This coefficient quantifies the overlapping area
between two probability density functions, thereby measuring
the degree of agreement between probability distributions. The
overlapping coefficient is defined within a range of 0 to 1, where
a value of 1 indicates a perfect fit, while lower values signify a
poorer fit. The analysis of 500 Monte Carlo results indicated that
the assimilation temperatures for each grid generally conformed
to a normal distribution. Therefore, normal distributions were fit-
ted to the assimilation temperatures for each grid under the two
priors, followed by the calculation of the overlapping coefficient
between the distributions. A significance threshold of 0.05 was
established to identify significant differences in PDA results across
the different priors. This threshold implies that, with 95% confi-
dence, the PDA results vary under different priors. Fig. S3 (online)
illustrates the assimilated temperature distributions for various
grids, along with the corresponding overlapping coefficients.

2.6. Assimilated result validation

To assess the reliability of the PDA results, both internal and
external validation were conducted. Internal validation was
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performed by withholding 20% of the marine proxy records across
500 Monte Carlo iterations (Section 2.4). The prior and posterior
SST, SSS, and §'80y,, fields were used to predict these withheld
proxy records by Bayesian forward models. The accuracy of the
assimilation was evaluated by comparing both prior- and
posterior-predicted values with the actual proxy observations.
For the external validation, stalagmite 6'30 records from 34 caves
across Eurasia, covering both the MH and LH, were selected from
the SISALv2 database [28], a comprehensive speleothem isotope
repository with multiple age-depth models. The simulated and
assimilated §'80 anomalies for the MH, relative to the LH, were
compared against the observed proxy values.

3. Results and discussion
3.1. The role of model priors in PDA

In PDA, simulated climatic fields can provide background infor-
mation and climatic covariance relationships between different
regions, often referred to as model priors [29]. Model priors can
inherently affect the PDA results [30]. To assess the effect of model
priors on assimilated results and their consistency, two MH simula-
tions with different vegetation configurations were used as PDA
model priors. One employs PI vegetation conditions (“CTL_model”),

(a) CTL_PDA
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while the other features enhanced vegetation cover in both Saharan
and Arctic regions (“VEG_model”). This latter simulation accounts
for large-scale differences in vegetation cover relative to the pre-
sent. During the early to mid-Holocene, increased rainfall in the
Sahara Desert region supported significantly more vegetation com-
pared to present-day conditions [31,32]. During the MH, there was
a northward expansion of forest cover in the Arctic [33]. This, in
combination with the marine temperature records (Fig. S1 online),
enables us to produce two MH global SAT fields, of which anomalies
are with respect to assimilated results from a PI model prior. These
are termed “CTL_PDA” and “VEG_PDA”, respectively.

The CTL_PDA and VEG_PDA results show significant discrepan-
cies in North Africa and North America, with assimilated differ-
ences reaching more than 2 °C (Fig. 1c). In contrast, there are no
significant differences across the Eurasian and Arctic regions over-
all, except in certain parts of East Asia. This indicates that the
assimilated temperatures in the former regions are dependent on
the model priors. By contrast, the assimilated temperatures in
Eurasian and Arctic regions appear to be largely independent of
the model priors.

The varying vegetation configurations in CTL_model and
VEG_model result in different terrestrial responses in the Sahara
and the high latitudes of Eurasian, as well as in regions with close
dynamic interconnections, such as North America and the Arctic

(b) VEG_PDA

ASAT

-2.5 2 15 -1 -0.5

0.5 1 1.5 2 2.5

Fig. 1. Assimilated global annual mean temperature anomaly fields between MH and LH derived from PDA using (a) CTL model prior, (b) VEG model prior, and (c) the
difference between the two assimilated results (VEG minus CTL). Green circles represent proxy sites with available proxy values for both the MH and LH. Black dotted areas
represent the areas where the overlapping coefficient of assimilated temperature distributions from different model priors is less than 0.05, signifying statistically significant

differences in the assimilated results.



S. Hao et al.

[34-36]. In the adjacent marine areas, the amplitude of simulated
temperature anomalies exhibits spatial coherence between the
CTL_model and the VEG_model, with notably larger anomalies
observed in the Arctic compared to the coastal regions of North
Africa and North America (Fig. S2 online). Constrained by marine
proxy records, the updates by the PDA on simulated SAT in the high
latitudes of Eurasian were substantially more pronounced than
those in the Sahara and North America (Fig. S4 online). Conse-
quently, the results from CTL_PDA and VEG_PDA in Eurasia are
more robust (Fig. 1). These results underscore the limitations of
the PDA when it relies only on marine records, thereby emphasiz-
ing the importance of integrating terrestrial proxy records to
enhance the accuracy of assimilated results.

The Southern Ocean is also characterized by significant incon-
sistency between the CTL_PDA and VEG_PDA (Fig. 1c). The proxy
records in this region are remarkably sparse (Fig. S1 online). In
the absence of a substantial number of local proxies, the assimi-
lated fields are more subject to proxies from distant regions and
the climate covariance relationships (CCR) [37,38] associated with
model priors. Variations in model priors may lead to differing tele-
connection patterns between the Southern Ocean and areas abun-
dant in proxies, such as the East Pacific, Western Pacific, and
Western North Pacific. This variability contributes to uncertainties
in CCR and, consequently, the dependence of the assimilated
Southern Ocean temperatures on the chosen model priors. For
example, while the CTL_model and VEG_model exhibit different
temperature patterns in the NH, this distinction is not observed
in the Southern Ocean (Fig. S2 online). This results in discrepancies
in CCR among different model priors, ultimately leading to signifi-
cant divergence in the assimilated results for the Southern Ocean.
In contrast, the North Pacific does not exhibit substantial discrep-
ancies between PDA results, even with a limited number of local
records. The primary climate modes that govern spatial tempera-
ture variability in the North Pacific include the Pacific Decadal
Oscillation and the El Nifio-Southern Oscillation, with variance
centers located in the eastern and western Equatorial Pacific as
well as the northwestern North Pacific. In these regions, a substan-
tial number of proxies are available to constrain the basin-scale
temperature changes. This underscores the efficacy of PDA, which
leverages climate dynamics to produce a coherent large-scale tem-
perature anomaly field.

To address potential biases arising from specific physical struc-
tures within a singular climate model, we further conducted a PDA
utilizing model outputs from MPI-ESM (MPIESM_PDA). This analy-
sis is compared with the assimilated results derived from iCESM
(iCESM_PDA). Note that model priors in iCESM_PDA incorporate
both the CTL_model and VEG_model, as this combination most
comprehensively represents the physical structures of iCESM. Both
models exhibit consistent assimilated temperature patterns across
the Eurasian continent, thereby supporting the assertion that the
assimilated Eurasian temperatures are independent of model pri-
ors (Fig. S15 online).

Via our multi-prior approach, significant uncertainties in the
Southern Ocean, North Africa, and North America prevent us from
a further analysis of seasonal Holocene temperature changes at a
global scale. Instead, in the following, we focus on Eurasia, where
the differences in assimilation results across most regions are rel-
atively insignificant. This enables us to minimize or eliminate the
influence and uncertainty of varying assimilation results on our
analysis of investigating potential deficiencies in model simula-
tions and proxy reconstruction.

3.2. Simulated cooling bias in winter temperature

Given that most contemporary MH simulations are based on PI
vegetation configurations [11], the CTL scenario is prioritized to
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ensure comparability with existing studies. The model simulation
(CTL_model) reveals a significant winter cooling anomaly
(Fig. 2f-h) over Europe and Eurasian high latitudes when con-
trasted with the assimilated results (CTL_PDA). In contrast, the dis-
crepancy in anomalies within these regions is minimal during the
summer (Fig. 2a-c).

Validation of the PDA results was conducted using randomly
withheld marine records during the PDA process, along with inde-
pendent stalagmite 6'30 records from Eurasia. This validation con-
firmed an improvement in PDA performance compared to the
model prior, with an approximate 15% reduction in error
(Figs. S5-S7 online). Additionally, an independent seasonal terres-
trial temperature proxy dataset [23] was utilized to compare PDA
results with proxy-based reconstructions and model outputs. This
dataset comprises 88 winter and 170 summer temperature records
(Section 2). However, it is characterized by an uneven spatial dis-
tribution, with the majority of records concentrated in Europe,
accounting for over 80% of the Eurasian proxies (Fig. S10 online).
Consequently, this concentration may limit the dataset’s ability
to accurately represent continental-scale changes. For the compar-
ative analysis, Europe was chosen as the focal region owing to its
higher density of proxy records. Additionally, a spatial gridding
technique (5° x 5°) was applied to mitigate the disproportionate
weighting effects caused by the dense concentration of records in
specific areas (Fig. S11 online).

A robust agreement regarding MH summer warming is
observed in the assimilated, simulated, and reconstructed temper-
ature results (Fig. 2d). The results for simulated and assimilated
winter temperatures exhibit contrasting values, with the latter
aligning more closely with proxy data (Fig. 2i). This discrepancy
suggests that the model outputs exhibit a cooling bias when simu-
lating MH winter temperatures in Europe and the high latitudes of
Eurasia. Furthermore, the majority of climate models participating
in the Paleoclimate Modelling Intercomparison Project Phase 4
(PMIP4) simulate colder winters in the high latitudes of Eurasia
during the MH compared to the PI period (Fig. S12 online), indicat-
ing a systematic winter cooling bias in MH simulations. In contrast,
the VEG_model, which incorporates MH vegetation settings, cap-
tures the winter warming in the high latitudes of Eurasia (Fig. S8
online). This result suggests that simulated winter temperatures
are affected by changes in vegetation. Additionally, the warming
associated with vegetation changes is closely linked to Arctic sea
ice concentration, particularly in high-latitude regions [12]. There-
fore, the cooling bias is attributed to deficiencies in the models’
representation of vegetation and sea ice feedback mechanisms. Cli-
mate models may underestimate the retreat of summer Arctic sea
ice during the MH due to inadequate consideration of vegetation
changes and sea ice dynamics, including the physics of sea-ice melt
ponds [10,12,39,40]. This underestimation can result in sustained
warming effects on winter temperatures, driven by a reduction
in surface albedo and enhanced ocean-atmosphere interactions
[10]. The warming induced by sea ice processes may, in turn, exert
additional effects on vegetation, thereby establishing a positive
feedback loop. However, in certain mid-latitude regions of Europe,
the VEG_model still struggles with simulating MH winter warm-
ing, as indicated by assimilated and reconstructed data (Figs. S8,
S9 online). This observation indicates a localized simulation bias,
likely associated with the omission of anthropogenic land use in
MH simulations. Since the early Holocene, the expansion of agri-
culture has significantly altered terrestrial landscapes and ecosys-
tems [41,42]. This transformation may have particularly affected
mid-latitude Europe, where intensive human land use was already
well established at that time [43].

In a seminal paper concerning HTC [4], a key debate revolves
around why the reconstructed annual mean temperature is
characterized by an evident contrast in simulated annual mean
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Fig. 2. PDA-proxy-model comparisons of Eurasian temperatures under CTL vegetation scenario. (a) Background field represents simulated MH Eurasian summer (JJA)
temperature anomaly fields under CTL scenario, circles represent proxy-based reconstructed summer temperatures, and the box represents the Europe region. (b) As in (a),
but for assimilated fields. (¢) Updated field of the assimilated field relative to the simulated field, namely (b) minus (a). (d, e) PDA-proxy-model comparisons of summer
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in the fields. Shadows represent the uncertainty range, with 1c for reconstructed results, and 90th-percentile for assimilated and simulated results. (f-j), (k-0) As in (a)-(e),

but for winter (DJF) and annual mean temperatures, respectively.

temperature but has a good consistency with simulated summer
temperature, particularly in the mid to high latitudes of the NH.
This discrepancy has led to an ongoing debate between proxy sea-
sonal bias and model deficiency. While previous research has iden-
tified a warm-season bias in Holocene marine records as a primary
contributor to the inconsistencies between proxy data and model
outputs [7,9], subsequent studies have raised questions about this
conclusion due to methodological issues [44,45] and the uneven
spatial distribution of proxy records [8]. Recent developments in
NH pollen records and East Asian snail records suggest that there
is no significant seasonal bias present in the proxy data, indicating

2019

that model deficiencies are likely the primary cause of the discrep-
ancies observed between proxies and models [8,46G]. The assimi-
lated seasonal temperature data for Eurasia serve as an
independent reference to objectively assess temperature seasonal-
ity in the mid to high latitudes of the NH, a region characterized by
pronounced proxy-model mismatches as highlighted in HTC [4].
Notably, the assimilated results are in strong agreement with the
proxy records. Therefore, deficiencies in winter temperature simu-
lation, rather than proxy seasonal bias, are identified as the pri-
mary drivers of discrepancies between models and proxies in this
critical region. These deficiencies are attributed to overlooked
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changes in surface landscapes and an underestimation of Arctic
summer sea ice retreat in MH simulations. Furthermore, the signif-
icant retreat of Arctic sea ice may have considerable warming
effects on lower latitudes [47]. Therefore, the simulated cooling
bias may extend beyond high latitudes in the NH, potentially exert-
ing global impacts and contributing to a cooling bias in GMST.

3.3. Regional versus continental seasonal temperature reconstruction

Holocene temperature evolution exhibits significant spatial
heterogeneity [8,48-51]. This variability, coupled with the uneven
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spatial distribution of proxies [52], prompts an inquiry into
whether the restricted spatial distribution of these proxies can
adequately represent temperature changes on a larger scale, such
as continental or hemispheric levels.

The assimilated Eurasian temperatures are independent of
model priors, enabling a comprehensive evaluation of spatial proxy
sparsity and its effect on regional temperature variations. In
Eurasia, the assimilated MH temperature seasonality exhibits
significant and consistent spatial heterogeneity across different
vegetation settings (Fig. 3). This pattern is comparable to the proxy
data but contrasts with the results from simulations. Notably, the
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Fig. 3. Assimilated MH Eurasian seasonal and annual mean temperatures anomaly fields under different vegetation scenarios and comparison between different latitudinal
zones. (a) Assimilated MH Eurasian spring (MAM) mean temperature anomaly field under CTL scenario. (b-e) As in (a), but for JJA, SON, DJF and annual mean temperature,
respectively. (f, j) As in (a-e), but for the VEG scenario. (k) Assimilated mid-Holocene Eurasian annual mean and seasonal SAT anomaly, red triangles for CTL scenario, blue
triangles for VEG scenario, error bars represent 90th-percentile ranges, red (blue) shade represents mid-Holocene warming (cooling) under both scenarios. (I-n) As in (k), but
for different Eurasian regions, high latitudes (> 60°N), mid-latitudes (30°N-60°N), and low latitudes (< 30°N), respectively.
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assimilated winter and annual mean temperatures indicate sub-
stantial warming in Europe and the high-latitude regions of Eurasia,
while exhibiting cooling trends in other Eurasian areas. This stands
in contrast to the homogeneous cooling observed in the simulated
temperature data (Fig. 2f). The spatial heterogeneity of MH seasonal
temperature changes is also reflected in the MPIESM_PDA results
(Fig. S16 online). The Eurasian temperature proxies are predomi-
nantly located in Europe, which accounts for 83%, 95%, and 83% of
the total continental records for summer, winter, and annual mean
temperature proxies, respectively (Fig. S10 online). This uneven dis-
tribution results in regional biases in continental-scale reconstruc-
tions, particularly affecting the reconstructions of winter and
annual mean temperatures (Fig. 2j, o).

In the CTL_PDA, the observed change in European MH winter
temperature anomalies, characterized by a warming of 0.5 °C, con-
trasts sharply with the continental average, which indicates a cool-
ing of approximately 1.5 °C (Fig. 2i, j). This discrepancy ultimately
leads to a distinct spatial pattern of temperature change in annual
mean temperature between Europe and Eurasia, with Europe expe-
riencing slight warming while Eurasia undergoes significant cool-
ing (Fig. 2n, o), despite both regions sharing a consistent pattern
of summer warming. Notably, the spatial gridding technique
employed does not effectively address the regional bias that arises
from the uneven distribution of proxy records (Fig. 2j).

A continental-scale mechanism is suggested to drive the
observed consistent summer warming, while different regional
processes are required to explain the spatial heterogeneity of win-
ter temperature changes. The summer warming can be attributed
to the strong MH boreal summer insolation (Fig. S13 online). This
leads to a general warming trend across Eurasia, particularly north
of 30°N, with the exception of the Indian and Arabian continents,
which experienced cooling due to negative cloud radiative forcing
linked to the intensified boreal summer monsoon [11] (Fig. 3). Dur-
ing the MH winter, Europe and the high latitudes of Eurasia exhibit
a warming anomaly, while the remainder of Eurasia experiences
cooling. The warming observed in high latitudes is attributed to
the legacy effects of insolation-driven reductions in Arctic summer
sea ice [53]. The cooling observed in other regions is a direct con-
sequence of the low MH local winter insolation, which is affected
by low soil heat capacity [54] (Fig. S13 online). Furthermore, this,
in addition to assimilated continental temperatures from autumn
to spring (Fig. 3), suggests that the reduction of summer sea ice
in the Arctic during the MH has limited effects on SAT south of
approximately 60°N in Eurasia. In these areas, local seasonal and
mean annual temperature changes are predominantly governed
by insolation-induced seasonality and the associated climate feed-
back mechanisms (Fig. S14 online).

Our results suggest that the current spatial distribution of prox-
ies, particularly the predominance of European proxies within the
Eurasian dataset, is insufficient for providing a comprehensive
continental-scale representation of MH temperature changes. This
limitation has been overlooked in previous model-proxy compar-
isons [3,4,8,9,23], which have relied on overestimated homoge-
neous temperature changes as projected by climate models
(Fig. 2f, g, j, k, 1, 0). Consequently, this gives rise to a warming bias
in the reconstructions of continental-scale winter and annual mean
temperatures, thereby complicating the understanding of Holo-
cene temperature evolution. Furthermore, this implies that regio-
nal biases may persist in global temperature reconstructions due
to the uneven distribution of records, even when employing spatial
gridding techniques. The spatial sparsity of proxies also introduces
uncertainty in the assimilated seasonal temperatures, particularly
in under-sampled regions where PDA-proxy-model comparisons
are lacking. Proxy records from these under-sampled areas, espe-
cially the mid-latitudes of Eurasia (30°N-60°N), such as the Silk

2021

Science Bulletin 70 (2025) 2014-2022

Road regions, are highly valuable. They not only have the potential
to fill gaps in the Eurasian database but also to qualitatively repre-
sent continental-scale changes.

4. Conclusion

This study applied MH temperature assimilation using global
marine records and multiple climate model priors. The results
demonstrate that different model priors can substantially affect
Holocene temperature assimilation results. Due to the challenges
associated with achieving globally consistent PDA results across
different model priors, a comprehensive resolution of the HTC at
a global scale remains unattainable. However, in the mid-to-high
latitudes of the NH, where the discrepancy between model simula-
tions and proxy reconstructions is most pronounced, our results
underpin the previously outlined shortcomings of proxy recon-
structions and model simulations. Addressing the HTC effectively
requires improvements in the representation of surface land-
scapes, vegetation dynamics, and sea ice feedbacks in climate mod-
els, alongside an expansion of proxy data coverage. Despite these
advancements, certain limitations persist in this study and warrant
further investigation. First, the analysis relies on two independent
isotope-enabled climate models, which may not fully capture the
range of climate covariance structures present in contemporary
models. Second, the absence of a reliable proxy system model for
pollen records (i.e., the most abundant terrestrial proxy for the
Holocene) precludes their direct assimilation based on raw proxy
values. We chose not to assimilate pollen records based on their
reconstructed temperature values, as done by Erb et al. [14],
because this would introduce an additional layer of uncertainty.
Nevertheless, the assimilated seasonal temperatures exhibit strong
agreement with independent terrestrial temperature records, pro-
viding validation for the PDA approach and our findings. Further-
more, the limited availability of winter temperature proxy
records in Asia prevents direct validation of the assimilated winter
temperature anomalies, underscoring the critical need for
expanded winter temperature reconstructions in the region. Future
research should prioritize the development of a multi-model prior
framework for PDA [55], the development of proxy system models
for terrestrial proxies, and the inclusion of additional proxy records
from under-sampled regions. These efforts will be essential for
generating a more comprehensive and globally representative sea-
sonal temperature reanalysis.
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The sea surface temperature proxy dataset used for data assim-
ilation is publicly accessible via the National Oceanic and Atmo-
spheric Administration (NOAA) Paleoclimatology Data Archive at
https://www.ncdc.noaa.gov/paleo/study/33112. The independent
seasonal temperature proxy dataset used for validation is available
from Zhang et al. [23] (https://doi.org/10.1016/j.scib.2021.09.004).
Source data supporting this study are provided with the paper. The
MATLAB code for paleoclimate data assimilation and analysis is
publicly available at https://github.com/ShuoHao1996/DA_6ka.
The DASH MATLAB package used for paleoclimatic data assimila-
tion is accessible at https://github.com/JonKing93/DASH. The
MATLAB code of Bayesian forward models used in this study can
be found at https://github.com/jesstierney.
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