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Coral bleaching

Coral reefs are one of the ecosystems most vulnerable to cli-
mate change (IPCC 2023; Reimer et al. 2024). For instance, 
rapidly warming oceans cause mass coral bleaching and 
therefore, significant declines of Scleractinian corals that 
are responsible for engineering tropical reefs. Coral bleach-
ing appears to be initiated by the temperature-dependent loss 
of photosystem II (PSII) function in their algal mutualists 
(Iglesias-Prieto et al. 1992; Jones et al. 1998, 2000; Warner 
et al. 1999; Ragni et al. 2010), often tracked by measuring 
the maximum quantum yield of PSII or the maximum pho-
tochemical efficiency (Fv/Fm). The ratio of Fv/Fm has been 
used extensively in coral research with changes in Fv/Fm 
being strongly linked to coral bleaching severity (Warner 
et al. 1996, 1999) and differences in thermotolerance among 
Symbiodiniaceae species (Kemp et al. 2014). However, 
measuring Fv/Fm and accurately interpreting the results can 
be challenging. Here, we provide a brief perspective on the 
value of measuring Fv/Fm and present summary statistics 
of photochemical performance in response to acute ther-
mal stress experiments, aiming to advance coral bleaching 
research.

During thermal bleaching, the coral animal and its algal 
symbionts (the holobiont) experience a severe reduction in 
pigmentation (Chlorophyll a, Chla), in the number of algal 
cells, and a suppression of photosynthesis. The loss of PSII 
function in the zooxanthellate algae due to elevated tempera-
tures may result from incomplete repair of the D1 protein 
in PSII reaction centers (Iglesias-Prieto et al. 1992; Warner 
et al. 1996, 1999; Iglesias-Prieto and Trench 1997; Taka-
hashi et al. 2004, 2008; Hill and Ralph 2007; McGinley et al. 
2012; Hill and Takahashi 2014), impaired Calvin–Benson 
cycle activity (Jones et al. 1998; Smith et al. 2005), and/
or damaged thylakoid membranes (Tchernov et al. 2004). 
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II (PSII) function in photosynthetic algal symbionts (Sym-
biodiniaceae) of reef-building corals exposed to heat stress, 
particularly at the early stages of coral bleaching. Loss of 
PSII function can be quantified as the temperature at which 
a holobiont loses 50% of maximum photochemical efficiency 
(50% effective dose, or ED50) when exposed to a range of 
experimental temperatures. Here, we demonstrate that dose–
response curves can be substantially more informative about 
a coral’s stress response by including ED5 (5% effective 
dose), ED95 (95% effective dose), and decline width (ED95–
ED5) values in summary statistics. These parameters are 
commonly used in plant ecophysiology and can be extracted 
from fitted Fv/Fm temperature response curves. This suite of 
metrics provides a broader understanding of the loss of PSII 
function in acute thermal stress experiments in corals and 
could enhance comparability among coral and plant studies.

Keywords  Coral bleaching · Dose–response curves · 
ED50 · Maximum photochemical efficiency · Acute 
thermal stress

 *	 Iliana B. Baums 
	 iliana.baums@hifmb.de

	 Kelly Gomez‑Campo 
	 kelly.gomezcampo@hifmb.de
1	 Helmholtz‑Institute for Functional Marine Biodiversity, 

University of Oldenburg (HIFMB), 26129 Oldenburg, 
Germany

2	 Alfred Wegener Institute, Helmholtz-Centre for Polar 
and Marine Research (AWI), Bremerhaven, Germany

3	 Institute for Chemistry and Biology of the Marine 
Environment (ICBM), Carl Von Ossietzky Universität 
Oldenburg, 26129 Oldenburg, Germany

http://orcid.org/0000-0001-6463-7308
http://crossmark.crossref.org/dialog/?doi=10.1007/s00338-024-02587-5&domain=pdf


78	 Coral Reefs (2025) 44:77–84

These processes lead to excess excitation energy and the 
production of reactive oxygen species (Weis 2008; Szabó 
et al. 2020). During heat stress events outside the limits of 
acclimation, corals enter a positive feedback loop where 
the loss of algal cells increases the local irradiance within 
the tissue, leading to further algal cell loss. Increases in the 
magnitude of environmental stress accelerate this symbiont 
loss (Swain et al. 2016). This is additionally accompanied 
by a nutritional imbalance between host and algae, which 
culminates in a “bleached phenotype” (Hillyer et al. 2016; 
Scheufen et al. 2017; Gómez-Campo et al. 2022; Krämer 
et al. 2022) (Fig. 1).

Coral holobionts respond to similar temperature stress 
in a variety of ways, and since there is a predicted rapid 
increase in thermally stressful conditions, heat-resilient 
populations, species, and host/symbiont combinations are 
of immense interest for research and restoration applica-
tions (Baums et al. 2019; Morikawa and Palumbi 2019). It 
is thus beneficial to experimentally expose coral holobionts 
to a range of temperatures up to and outside the acclima-
tion range. Moreover, the strongest thermal tolerance com-
parisons across species and locations are made when the 
experimental heat exposure is standardized (McLachlan 

et al. 2020; Voolstra et al. 2020; Grottoli et al. 2021), which 
allow further comparisons among populations (Barshis et al. 
2013; Fine et al. 2013; Palumbi et al. 2014; Osman et al. 
2018; Voolstra et al. 2020; Evensen et al. 2022) and coral 
genets (Baums et al. 2013; Palumbi et al. 2014; Dixon et al. 
2015; Parkinson et al. 2015; Hoadley et al. 2024). However, 
despite the many methodological advances in coral bleach-
ing research, the phenotypes routinely quantified during heat 
stress challenges remain limited.

Assessing thermal stress with pulse amplitude 
modulated fluorometry

Pulse amplitude modulated (PAM) fluorometry (Schreiber 
et  al. 1986) is a widely used noninvasive technique for 
assessing several aspects of oxygenic photosynthesis. By 
measuring chlorophyll fluorescence, it has the potential to 
disentangle primary photophysical events (excitation energy 
transfer, charge separation), and secondary reactions (elec-
tron transport). While the Fv/Fm ratio is commonly used to 
assess PSII efficiency under dark-acclimated conditions, the 
PAM technique can also evaluate the electron transport rate 
(ETR) and non-photochemical quenching (NPQ), which 
provide insights into energy conversion and photoprotec-
tive mechanisms, respectively (Papageorgiou and Govindjee 
2004; Suggett et al. 2010; Gorbunov and Falkowski 2022). 
It is important to note that ETR curves are not equivalent to 
conventional photosynthetic response to irradiance (P vs. E), 
and, that the use of relative descriptors (relETR) overlooks 
light absorption regulation in the absence of absorptance 
measurements (González-Guerrero et al. 2021). Advanced 
techniques like fast repetition rate fluorometry (FRRf) and 
fast chlorophyll a fluorescence induction (OJIP) kinetics fur-
ther extend these capabilities by capturing more detailed flu-
orescence transients and dynamic changes in electron trans-
fer (e.g., functional absorption cross section of PSII, and 
energy transfer between PSII units) making them remarkably 
valuable for characterizing energy conversion (Kolber et al. 
1998; Suggett et al. 2010; Gorbunov and Falkowski 2022). 
Here, we focused on the Fv/Fm ratio, one of the most used 
parameter to fit temperature response curves (Díaz-Almeyda 
et al. 2011; Mansour et al. 2018; Voolstra et al. 2020; Even-
sen et al. 2021, 2022, 2023).

Fv/Fm is the maximum quantum yield of a stable charge 
separation for the dark-adapted state. This is derived by 
calculating the ratio Fv/Fm [(Fm–F0)/Fm, where Fm and F0 
represent the maximum and minimum fluorescence intensi-
ties of dark-adapted samples]. In corals, maximum quantum 
yield is a widely accepted measure of Photosystem II (PSII) 
efficiency, interpreted as a descriptor of photodamage accu-
mulation at the level of the photosynthetic membrane (Skir-
ving et al. 2018), and a valuable tool for studying responses 

Fig. 1   Multiple homeostatic states lead to coral bleaching. Corals 
acclimated under certain environmental condition (Homeostatic state 
1) experience time-dependent adjustments that take place in different 
cellular compartments: in the chloroplast (Photosystem II [PSII], H-st 
2), zooxanthellate algal  cells (Chlorophyll a, Chla), and host cells 
(zooxanthellae loss by exocytosis, autophagy, and Programed Cell 
Death, H-st 3). When heat stress exceeds the upper limits of toler-
ance, the (putative) net accumulation of oxidative damage triggers the 
significant loss of coral pigmentation and algal cells, culminating in 
coral bleaching (modified from (Gómez-Campo et al. 2022). Homeo-
static states, including coral bleaching, are reversible when environ-
mental conditions improve, and the holobiont may return to previous 
homeostatic states
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to environmental stress in photosynthetic organisms such 
as (vascular) plants, microalgae, and cyanobacteria (Sug-
gett et al. 2010). In physiological and ecological studies, 
dose–response curves are commonly used to understand 
how an organism responds to varying degrees of heat stress. 
These curves typically plot a physiological response, such 
as Fv/Fm, against a gradient of temperature stress, similar 
to what is done in plant heat stress experiments (Slot et al. 
2019; Araújo et al. 2021; Tiwari et al. 2021). The sigmoidal 
fit of the curve allows for the extraction of key parameters 
that describe the loss of PSII function in different ways. 
In plants and corals, 50% effective dose (ED50) has been 
extracted from fitted Fv/Fm temperature response curves 
(effective dose model of the dose–response curves package 
in R) (Ritz et al. 2015), which determines the temperature 
at which Fv/Fm decreases by 50% of its baseline tempera-
ture. The baseline temperature is typically based on the local 
climatology summarized as the monthly maximum mean 
(MMM) (Voolstra et al. 2020; Evensen et al. 2021, 2022, 
2023). In plant studies, several parameters, in addition to the 
ED50 metric, are further calculated. For example, effective 
dose 5 (ED5) is the temperature at which Fv/Fm declines 
by 5% of its maximum value, a breakpoint temperature asso-
ciated with the onset of the temperature-induced decline in 
Fv/Fm. In addition, effective dose 95 (ED95) is the tempera-
ture at which Fv/Fm declines by 95% of its maximum, where 
PSII functions are effectively lost. Furthermore, decline 
width (DW) provides a measure of the temperature range 
over which the plant experiences a decline in photochemi-
cal efficiency due to thermal stress and is calculated as the 
difference between ED95 and ED5. DW also describes how 
rapid or gradual the Fv/Fm decline rate is. Introducing these 
extended parameters into coral studies offers a novel and 
nuanced approach to comparing thermal stress responses. By 
integrating ED5, ED95, and DW into our analyses, we can 
capture the full spectrum of Fv/Fm decline in temperature 
response curves from coral symbionts, providing a richer, 
more detailed assessment of coral exposed to acute thermal 
stress experiments.

To explore ED5, ED95, and DW metrics, a dataset of 
Stylophora pistillata, Acropora hemprichii, and Pocil-
lopora verrucosa corals exposed to acute thermal stress 
assays (Coral Bleaching Automated Stress System, CBASS) 
(Evensen et al. 2022) was retrieved to showcase that the 
extended parameters mentioned above can be additionally 
extracted from coral temperature response curves (Fig. 2). In 
this study, several locations were compared, including Eilat 
(Northern Red Sea) with a local MMM of 27.56 °C, and Al 
Fahal (Central Red Sea) with a local MMM of 30.87 °C. In 
the Red Sea, S. pistillata displayed a North to South gradi-
ent of increasing ED50 thermal thresholds, with lower val-
ues in Eilat (34.72 °C ± 0.21; mean ± S.E.M., n = 7) than Al 
Fahal (37.22 °C ± 0.11). The breakpoint temperature, ED5, 

averaged 31.08 °C ± 0.31 in Eliat and 35.31 °C ± 0.2 in Al 
Fahal. The photochemical efficiency, Fv/Fm, maintained 
a high breakpoint temperature (ED5) followed by a rapid 
decline in S. pistillata in Al Fahal (Fig. 2b) and by A. hem-
prichii in Eilat (Fig. 2d). These measurements resulted in 
a “narrow” shaped response curve which shows similarity 
to some plant species (Slot et al. 2019; Araújo et al. 2021; 
Tiwari et al. 2021). Depending on the conditions, plant spe-
cies may also show a low ED5 breakpoint temperature, like. 
S. pistillata (Fig. 2a) and P. verrucosa in Eilat (Fig. 2c), 
resulting in a “wide” shaped temperature response curve due 
the gradual loss of PSII function.

The differences in coral holobiont response curves, nar-
row or wide, could be associated with tolerant or sensitive 
phenotypes as suggested in plants (Slot et al. 2019; Araújo 
et al. 2021; Tiwari et al. 2021). In coral holobionts, several 
photoprotective pathways, including enhanced capabilities 
for alternative photosynthetic electron transport (Reynolds 
et al. 2008), non-photochemical quenching (Hoegh-Guld-
berg and Jones 1999; Gorbunov et al. 2001), regulation of 
light-harvesting antenna (Takahashi et al. 2008), regulation 
of xanthophyll cycling (Brown et al. 1999), and increased 
PSII D1-synthesis-mediated activity (Takahashi et al. 2004; 
Hill and Takahashi 2014; Schrameyer et al. 2016), could 
explain the shape of the Fv/Fm response curve. Especially 
valuable would be comparative temperature response curve 
experiments on Symbiodiniaceae in culture and in hos-
pite that directly quantify these photoprotective pathways 
(Brown et al. 1999; Dove 2004; Hill et al. 2005; Erickson 
et al. 2015). For example, plant species with wide response 
curves were thought to have early onset of PSII protective 
mechanisms (such as heat shock proteins) and switch from 
non-cyclic to cyclic electron transport around Photosystem 
I (Tiwari et al. 2021). Variability in functional traits of coral 
hosts and algae represent diverse strategies of regulation and 
photoprotection to avoid, minimize, and repair photooxida-
tive damage in stress conditions. While the exact mecha-
nisms that underpin the thermal stability of photosynthesis 
in reef-building corals have not been fully characterized, 
complementary approaches to dose–response experiments 
could test specific hypotheses related to the cascade of cel-
lular events.

Limitations of Fv/Fm in coral bleaching research

Using the maximum quantum yield of PSII (Fv/Fm) as a sole 
phenotype for coral bleaching has limitations. For example, 
one factor that significantly influences the explanatory power 
of Fv/Fm as a metric for bleached phenotypes is the reduc-
tion in Fv/Fm resulting solely from increased light exposure 
within the tissue. The loss of pigmentation induces a syn-
ergistic effect of light stress and heat stress, which impacts 
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Fv/Fm measurements. Consequently, in some cases, the 
rapid accumulation of photodamage and the extent of Fv/Fm 
declines do not accurately reflect the loss of photosynthetic 
performance or the degree of pigment or symbiont loss.

Furthermore, measuring Fv/Fm requires a well-defined 
reference state due to its dependency on numerous factors 
such as sampling (environmental conditions, season, depth-
dependent light condition, intracolonial light condition, local 
climatology), experimental light conditions, experimental 
temperature conditions (ramp-up and ramp-down), dura-
tion of heat stress (heat-hold), duration of the experiment 
(acute, moderate, long-term), water flow rate, and Fv/Fm 
measurement (dark-adapt samples prior measurement ensur-
ing PSII are in an “open state” and photochemical quench-
ing is minimized), which are also essential for cross-study 
comparisons (McLachlan et al. 2020; Grottoli et al. 2021). 
Discrepancies in instrumentation, even between instruments 
of the same brand and model, can lead to varying results 
and natural variability in fluorescence across temporal and 
spatial scales must also be considered (Suggett et al. 2010). 
The value of Fv/Fm measurements is thus tightly linked to 

strict experimental standardization. Although chlorophyll 
fluorescence is often regarded as an important indicator of 
the relative "health" of reef-building corals, it is critical to 
recognize that it primarily reflects the photochemical activ-
ity of symbionts in hospite, rather than providing a com-
plete picture of the holobiont’s overall health, which poses 
a potential limitation.

Additional, noninvasive techniques to Fv/Fm 
for coral bleaching research

Noninvasive techniques other than the maximum quantum 
yield of PSII, such as absorption measurements, are crucial 
for assessing the physiological condition of corals under heat 
stress that results in coral bleaching. For instance, corals 
exhibit photoprotective mechanisms like tissue retraction, 
the production of fluorescent proteins, and endolithic algae 
in the skeleton, which are not detected by Fv/Fm measure-
ments alone and change with increasing heat stress (Salih 
et al. 2000; Brown et al. 2002; Dove 2004; Dizon et al. 2021; 

Fig. 2   Key parameters describing the loss of photosystem II func-
tion can be extracted from  temperature response curves in acute 
thermal stress experiments. Fv/Fm curves were fitted to an 18 h short-
term heat stress in the Coral Bleaching Automated Stress System 
(CBASS) (data retrieved from (Evensen et  al. 2022)). Parameters 
extracted from the fit are temperatures at which Fv/Fm declines by 
5, 50, and 95% of its maximum Fv/Fm (baseline temperature, MMM 
°C) expressed as ED5, ED50, and ED95, respectively. Decline width 
(DW) expressed as ED95–ED5 describes the shape of the curve 

(wide or narrow). a and b Stylophora pistillata maximum photochem-
ical efficiency (Fv/Fm) in relation to temperature in two locations with 
different maximum monthly mean (MMM), the Northern Red Sea 
(Eilat, MMM 27.01 °C, blue), and Central Red Sea (Al Fahal, MMM 
31.56  °C, red). c Pocillopora verrucosa and Acropora hemprichii 
temperature response in Eilat and d Acropora hemprichii across four 
locations in the Red Sea showing curves with similar shapes across 
the region
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Satoh et al. 2021; Bollati et al. 2022; Galindo-Martínez et al. 
2022b, 2022a). Absorptance (A), estimated from reflec-
tance (R) measurements, describes the relative amount of 
solar energy/incident light that can potentially be used in 
photosynthesis for organic carbon fixation. Comparisons 
of pigment-specific absorptance (A) and absorbance (De) 
peaks, for example Chla at 675 nm (A675, De675), are also 
informative of the change in functional optical properties 
of the holobiont tissue (i.e., a proxy of Chla content, con-
sidering that at 675 nm the interference of accessory algal 
and animal pigments are minimized) (Enríquez et al. 2005; 
Rodríguez-Román et al. 2006; Scheufen et al. 2017; Hoadley 
et al. 2024). Together, these noninvasive descriptors pro-
vide a more comprehensive picture of the holobiont’s overall 
physiological condition, allowing for better insight into coral 
thermal stress responses than solely using the maximum 
quantum yield of PSII.

Conclusion

This perspective provides a structured approach to incor-
porating plant biology metrics into coral thermal tolerance 
studies, offering a comprehensive framework for future 
research and conservation efforts. The effective dose (ED) 
metrics—ED5, ED50, and ED95—alongside the decline 
width (DW) have proved to be useful tools in plant pho-
tobiology, offering complementary quantifications of 
temperature-dependent PSII functionality. These metrics 

enable researchers to determine the temperature at which 
photosynthetic efficiency begins to decline, reaches a criti-
cal midpoint, and ultimately fails. By extending these con-
cepts to coral photophysiology, we can potentially unlock 
new insights into PSII loss of function in well-standard-
ized experimental approaches (Fig. 3).
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Fig. 3   Putative relationships 
between the breakpoint temper-
ature (ED5), and decline width 
(DW). This type of visualization 
segregates species and locations 
by gradual changes in Fv/Fm 
over treatment temperatures and 
therefore wide DWs (P. verru-
cosa and S. pistillata in Eilat) or 
narrow DWs that indicate rapid 
(A. hemprichii) declines in Fv/
Fm. Moreover, species with high 
breakpoint temperatures tend to 
display narrow DWs. a Relative 
ED5 (rel_ED5 °C = ED5 °C–
MMM °C) and b absolute 
ED5 °C are shown for com-
parison
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