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Abstract Amplified climate change across the Arctic causes significant permafrost thaw and an increase of
permafrost degradation landforms. These landforms range from fine‐scale degrading ice wedge‐polygon‐
networks to large‐scale features such as thermo‐erosional gullies and reshape entire landscapes. In particular the
expansion of thermo‐erosional gullies could have far‐reaching consequences by restructuring drainage
pathways. Our study aims at finding a suitable remote sensing‐based approach for quantifying landscape‐scale
permafrost degradation in gully‐dominated Arctic landscapes. We use historical and recent high‐resolution
panchromatic satellite imagery allowing multi‐decadal analysis of degradation trajectories. Given that
degradation stages are characterized by distinct but subtle textural characteristics in satellite imagery, we tested
texture‐based machine learning segmentation methods including Random Forest (RF) using gray level co‐
occurrence matrix (GLCM) texture features and deep learning Convolutional Neural Networks (CNNs) using a
UNet architecture. For CNN, we tested various framework adjustments. Our results showed that CNN
outperforms RF particularly for complex texture‐defined classes. CNN reached a micro mIoU of 0.71 (accuracy
83.2%) compared to 0.61 (accuracy 75.9%) for RF. Well‐developed baydzherakhs, an advanced stage of ice‐
wedge‐polygon degradation, were detected with high confidence (recall of 0.78–0.96 for CNN). Data
augmentation and the use of GLCM features within CNN enhanced robustness against domain shifts. However,
the most efficient way to adapt the trained model for additional sites was achieved through targeted fine‐tuning.
In conclusion, CNN segmentation demonstrated satisfying performance in quantifying fuzzy permafrost
degradation stages. It can be expanded in space and time and therefore enables studying long‐term permafrost
degradation dynamics.

Plain Language Summary Climate change is particularly strong in the Arctic, causing permafrost
(permanently frozen ground) to thaw. Permafrost can have high ice contents, whose melting results in localized
surface subsidence as the soil collapses into the space previously occupied by the ice. This forms permafrost
thaw landforms ranging from meter‐scale melting ice wedge‐polygon networks to features such as erosional
gullies extending over hundreds of meters in length. The development of such landforms can reshape
landscapes, impact ecosystems, and alter drainage pathways. On high‐resolution satellite imagery, degradation
structures can be identified according to their distinct patterns. In our study, we tested machine learning methods
to map these structures. To enable long‐term analysis of permafrost thaw, we tested these methods on historical
and recent greyscale satellite imagery. The tested methods included pixel‐based classical segmentation
(Random Forest) using texture metrics as inputs and deep learning Convolutional Neural Networks (CNNs).
Our results showed that CNNs performed best, providing good results in delineating permafrost degradation
across large areas. The model can be adapted and improved for other sites by retraining it with a small amount of
site‐specific training data. This research is important because it enables understanding how permafrost is
changing across the Arctic.
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1. Introduction
Climate change‐induced permafrost thaw is significantly altering Arctic landscapes (e.g., Kokelj et al., 2021;
Nitzbon et al., 2020; Nitze et al., 2018; Vincent et al., 2017). Through the combination of ground‐ice melting,
subsidence, and erosion, degradation landforms can form at various scales and shapes and by a combination of
different processes and feedback mechanisms. The widespread emergence of such landforms can serve as in-
dicators for the thawing of ice‐rich permafrost. Fine‐scale permafrost degradation landforms, for example, are
formed as a result of melting ice wedges, which are arranged in typical polygonal structures. This leads to distinct
microtopographical changes, forming patterns ranging from polygonal‐shaped trough networks to regularly
distributed thermokarst mounds (Kanevskiy et al., 2014; Liljedahl et al., 2016; Nitzbon et al., 2021; Walter
Anthony et al., 2024). On the other hand, processes such as thaw slumping, ponding, and thermo‐erosion can form
larger individual or interconnected features such as retrogressive thaw slumps (Nesterova et al., 2024), ther-
mokarst ponds (Abolt et al., 2024), or thermo‐erosional gullies (Godin et al., 2014), which all can reach sizes of up
to several hundreds of meters. Within this degradation landscape, thermo‐erosional gullies play an important role.
Apart from accelerating local ice loss, they also restructure drainage pathways at the landscape scale, introducing
long‐term changes in the hydrological regime and the ecological system, impacting sediment, nutrient, and carbon
fluxes (Godin et al., 2014; Harms et al., 2014; Parmentier et al., 2024; Perreault et al., 2016; Zhang et al., 2022).
Specifically not only large‐ but also small‐scale catchments are expected to play a significant role in land‐ocean
fluxes (Vonk et al., 2023). Thermo‐erosional gully networks are widespread in Arctic permafrost lowland regions
and in some regions dense gully networks are even the dominating permafrost degradation landform (Morgen-
stern et al., 2021). These landscapes are highly dynamic, and as erosion and channelization are expected to in-
crease (Chartrand et al., 2023; Liljedahl et al., 2024; Rowland, 2023), they are prone to significant changes with
geophysical, hydrochemical, and biogeochemical consequences still poorly understood.

Permafrost dynamics at the landscape‐scale can be studied by analyzing multi‐temporal remote sensing data,
allowing insights into the extent and change of different degradation features or patterns. Ice‐rich permafrost
degradation can be detected with precise observations of surface elevation changes associated with thaw sub-
sidence, for example, by using repeat airborne LiDAR (Douglas et al., 2021; Rettelbach et al., 2021), InSAR
(Bernhard et al., 2022), or photogrammetric techniques based on optical imagery (Huang et al., 2023; Kaiser
et al., 2022). However, for remote areas such as the High Arctic, the availability of such data at very high vertical
and spatial resolution is often limited to few regions and time steps. More recently, new approaches to quantify
permafrost degradation employ machine learning methods on high‐resolution optical remote sensing imagery.
Most of these studies focus on the detection and delineation of specific landform types based on recent multi‐band
satellite imagery. For example, Nitze et al. (2021) developed deep learning approaches to delineate retrogressive
thaw slumps based on high‐resolution multispectral optical satellite imagery and elevation data. Witharana
et al. (2020) investigated the fusion of high‐resolution panchromatic (0.5 m) and moderate resolution (5 m)
multispectral imagery to segment ice wedge polygons (IWPs) using Convolutional Neural Networks (CNNs). In
the context of understanding longer‐term degradation trajectories, extending these methods to historical
panchromatic satellite or aerial imagery would expand observation records by several decades. Moreover, to
study dynamics and process interactions across landscape units, the main targets are not necessarily individual
degradation features, but the spatial extent of different degradation stages consisting of a range of landforms and
process stages such as ponding areas or IWP degradation. As these stages are characterized by specific spatial
patterns rather than shape, textural characteristics in imagery can provide crucial complementary information in
addition to the pixel‐based spectral characteristics Hall‐Beyer (2017b). This can be a particular asset when
working with the limited information content of single‐band panchromatic imagery and potential gray tone
variations across the different imagery types.

Image texture can be described as a function of pixel intensities that form repeated patterns. One of the most used
measures of texture is the grey level co‐occurrence matrix (GLCM) and its derived features (Ghalati et al., 2022).
GLCM metrics are second order statistical measures and describe the interrelationship of neighboring pixel in-
tensities within a region. In their initial paper Haralick et al. (1973) define 14 measures of GLCM features, which
allow describing textural characteristics in a highly discriminative manner. Since then, GLCM features have been
widely used in classical pixel‐based image segmentation especially for biomedical applications but also remote
sensing (e.g., Mboga et al., 2017). Commonly used classical supervised machine learning algorithms include
Random Forest (RF) and Support Vector Machine (SVM) (Sheykhmousa et al., 2020). However, for these
methods, selecting the most successful input GLCM features can be time consuming and challenging (Hall‐
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Beyer, 2017b). Especially for applications where targets show high variability in intensity, texture, or shape, a
large amount of input features are required to best represent each class. This leads to high dimensional data input
size resulting in high computational costs both for the feature extraction and the training (Hall‐Beyer, 2017b).
CNNs can overcome this disadvantage due to their ability to learn spatial‐contextual features directly from the
data though several hierarchical non‐linear layers making feature selection redundant (LeCun et al., 2015).
Several studies have shown that CNNs can outperform classical image segmentation (for SAR remote sensing,
e.g. Garg et al. (2021); for optical remote sensing, e.g. Korznikov et al. (2021)). A drawback of deep leaning
methods, however, is the requirement for large amounts of labelled data. Creating labels from scratch is time
consuming. Furthermore, different image quality, high inter‐class variability, and unclear or gradual boundaries
make consistent labelling difficult. Ways to overcome these issues are for example, image augmentation, where
the amount of labelling data is artificially increased by creating new imagery through geometrical and spectral
distortion of the original image. This approach not only provides a good tool to substantially increase otherwise
sparse labelling data but can specifically be used to learn invariance, for example, to account for illumination
distortions in the data source (Dosovitskiy et al., 2016). Other studies also suggested the usage of GLCM features
directly as input for CNN networks as they provide additional textural information which is difficult to learn due
to their non‐linearity (Loebel et al., 2022). Y. Zhang et al. (2024), Tan et al. (2020) and H. Zhang et al. (2021) for
example, showed that including GLCM matrices or features improve classification robustness and accuracy,
while the latter two emphasized this to be particularly true for cases of high model complexity and limited
availability of labelled data. However, the approach might also lead to overfitting (Loebel et al., 2022). In
contrast, we did not consider other mainstream methods such as multiscale object‐oriented segmentation ap-
proaches used in OBIA/GEOBIA. While these have been extensively used for and often demonstrated good
performance in segmenting landscapes particularly in correctly delineating object boundaries on high resolution
imagery (e.g., Kazemi Garajeh et al., 2022; Shahabi et al., 2019; Witharana et al., 2021), these methods involve a
relatively high level of labor‐intensive and operator‐dependent manual, multistage fine tuning. Considering the
gradual boundaries of our target classes, our main goal was to achieve good performance in representing areal
coverages rather than exact boundaries delineation, hence we did not consider object‐based methods in the
context of this study.

With our study, we tested and compared classical supervised machine learning with CNN segmentation to
identify the most suitable framework for extracting the extent of different permafrost degradation stages at the
landscape scale. Specifically in order to unlock the treasure of abundant but currently strongly underused high‐
resolution historical greyscale satellite imagery allowing for decadal‐scale change detection, we required an
approach that provides good result with single band imagery of different sensor types. Furthermore, as our targets
are not single, distinct features but rather degradation patterns with gradual transitions, we tested different texture‐
based segmentation frameworks. The approaches included: (a) Supervised, classical RF classification based on
GLCM features, and (b) CNN segmentation. For the CNN segmentation we tested four different adjustments: (a)
Different levels of augmentation in order to deal with the low amount of labeled data and to train invariance
against different image properties, (b) including GLCM features for additional information content to enhance the
learning of targets, which are mainly defined by their texture rather than shape, (c) using class and uncertainty
weighting to mitigate class imbalance and avoid overfitting of poorly defined boundaries and uncertain labelling,
and (d) testing different data normalization schemes to speed up convergence and increase robustness. We
compared the different approaches in terms of segmentation quality, but also robustness concerning different
image properties and transferability to other regions. We tested our segmentation approaches on three test sites
located on the New Siberian Islands in the Russian High Arctic, which represent an area of dense gully networks
and have been understudied even though permafrost degradation is expected to be substantial.

2. Study Area
The New Siberian Islands are located in the Russian High Arctic (Figure 1a). They are characterized by a rolling
grass‐moss tundra landscape incised by dense thermo‐erosional gully networks (Pismeniuk et al., 2023;Wetterich
et al., 2019). The islands belong to the continuous permafrost zone and are located in the Arctic climate zone
exhibiting a low mean annual air temperature of − 13.3°C, short summers and a mean total annual precipitation of
252.2 mm according to the 1991 to 2020 reference period of ERA5‐land data (Muñoz Sabater, 2019).

Detailed geocryological studies have been conducted on the New Siberian Islands since the 1950s (e.g., Andreev
et al., 2009; Kunitsky, 1998; Romanovskii, 1958a, 1958b; Schirrmeister et al., 2011). A large portion of the

JGR: Machine Learning and Computation 10.1029/2024JH000550

INAUEN ET AL. 3 of 28

 29935210, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000550 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [08/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



undulating topography on these islands is part of the Yedoma domain (Schirrmeister et al., 2011), whose extent is
indicated on the map in Figures 1a and 1b. Yedoma‐type ice complex deposits were accumulated in unglaciated
regions of Beringia during the Pleistocene and can be several 10s of meters thick (Strauss et al., 2017). They
consist of ice‐rich, organic‐bearing sediments, which are intersected by large ice wedges that form a typical ice
wedge polygon (IWP) network structure. In our study region, ice wedges were found to be up to 6 m wide and
25 m high on the southern coast of Bol'shoy Lyakhovsky Island (BLya) (Schirrmeister et al., 2011; Wetterich
et al., 2014) and up to 4 m wide and at least 5 m high on northern Faddeevsky Island (Fad) (Pismeniuk
et al., 2023). Together with the high excess ice content of the sediment in‐between the ice wedges, which were
found to reach up to 40 to 130 wt% at south BLya, and taking into account that ice wedges can take up to about
50% volume of the Yedoma ice complex, the total ground ice contents can reach values between 65 and 90 Vol%
(Schirrmeister et al., 2011). This high ice content makes the Yedoma deposits particularly susceptible to sub-
stantial thaw‐subsidence and erosion, resulting in distinct permafrost degradation landforms (Strauss et al., 2017).
Since the Late Glacial and throughout the Holocene, short‐term warming phases and the recent enhanced climate
warming, combined with neotectonic movements, have reshaped the landscape of the New Siberian Islands. This
has resulted in the formation of large thermokarst depressions dating back to the end of the late Pleistocene and
dense thermo‐erosional valleys and gullies that dissect and shape the modern topography of Yedoma hills

Figure 1. Location and extent of the three study areas on the New Siberian Islands. All areas are located in the Yedoma domain characterized by ice‐ and organic‐rich
permafrost deposits and represent the typical dense gully setting within gentle slopes. (Background imagery sources: Permafrost zones (Obu et al., 2018), Yedoma
extent (Strauss et al., 2021; 2022), ArcticDEMv4 (Porter et al., 2023) and Natural Earth, Free vector and raster map data @naturalearthdata.com).
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(Romanovskii et al., 2004; Schirrmeister et al., 2011). Other clear but smaller scale permafrost features visible
from satellite imagery include thermokarst ponds on poorly drained ridges or basins, similar as observed by Fraser
et al. (2018) in Alaska, thaw slumping along the coast (Barth et al., 2025) and most prominently the widespread
distribution of baydzherakhs. Baydzherakhs represent an advanced stage of IWP degradation in Yedoma deposits
and correspond to the sediment‐rich polygon centers after melting of the surrounding ice wedges (Godin &
Fortier, 2012; Strauss et al., 2017; Veremeeva et al., 2021) (Figure S1 with explanatory sketch in Supporting
Information S1). Baydzherakhs occur in groups (massifs), often on sloping terrain and can vary in appearance
(size, shape, vegetated or eroded surfaces) depending on the involved thermal denudation processes.
Sumina (2020, 2023) conducted a detailed study of baydzherakh occurrences on Kotelny Island, the northeast
island of the new Siberian Islands, based on field records from 1974 to 1975. She found shape ranges from small,
early‐stage or destroyed final‐stage flat mounds of about 0.5 m high and 5–8 m in diameter to strongly developed,
eroded conical mounds of up to 5 m high and diameters of up to 12 m. The latter were described as being located
generally at steeper slopes (>15°), where thermal denudation is very active.

As test regions for exploring different segmentation approaches, we selected two areas on the southernmost island
of Bolshoy Lyakhovsky (BLyaE and BLyaS) and one on Faddeevsky Island in the North (FadN) (Figures 1b–1e).
The sites include the typical gully‐dominated Yedoma landscape and cover catchments at different elevation
ranges and latitudes. Low‐lying plains such as large, up to several kilometres wide, drained thermokarst de-
pressions (alasses) and steep coastal slopes were deliberately excluded as they are expected to be dominated by
different degradation structures and processes.

3. Data and Methods
3.1. Remote Sensing Imagery

As input data, we selected the historical panchromatic KH‐9 Hexagon panoramic camera (KH‐9PC) imagery and
the panchromatic imagery of SPOT‐7 (Table S1 in Supporting Information S1). The restriction to panchromatic
imagery even for the recent time was chosen in order to maintain direct comparably for change detection. In terms
of resolution, the KH‐9PC imagery has ground resolution distances (GRD) ranging from 0.6 to 1.8 m
(NRO, 1972). The SPOT‐7 imagery was provided at a pixel size of 1.5 × 1.5 m but, according to the metadata, has
a ground sample distance (GSD) between 2.2 and 2.5 m. These resolutions are sufficient to resolve relatively fine‐
scale degradation features and patterns such as, for example, baydzherakhs which have a diameter of 5–10 m. The
KH‐9 Hexagon missions collected imagery over various regions on the globe, including the New Siberian Islands,
in the 1970 and 1980s as part of US intelligence observations. The KH‐9PC imagery was declassified and made
available for public and scientific use through the USGS Earth Explorer portal in 2013 (USGS, 2018). It has been
used for example, for urban research (Shahtahmassebi et al., 2023), tree count monitoring (Marzolff et al., 2022)
or to map glacier change (Ghuffar et al., 2023). In terms of analyzing permafrost degradation, it is a data source of
huge potential as it is available over areas for which historical aerial data is difficult to be obtained (i.e., Siberia)
and allows analyzing landscape changes over a ˜50‐year observation period at a high spatial resolution. However,
a challenge is that the historical and recent satellite imagery have different radiometric qualities and overall
processing levels. For example, the historical imagery is neither geometrically nor radiometrically corrected.

3.2. Image Pre‐Processing

To facilitate concurrent segmentation, we applied several pre‐processing steps that bring the KH‐9PC and SPOT‐
7 imagery to a similar processing level. The different steps are summarized in Table S2 of Supporting
Information S1.

To achieve geometric consistency, all files were georeferenced with respect to an already orthorectified SPOT‐7
image or the ESRI basemap (for FadN) and resampled to 1.5 m pixel resolution using bilinear interpolation. Due
to the strong geometrical distortion of the non‐geolocated KH‐9PC imagery, georeferencing was done manually
in ArcGIS using a combination of polynomial transformation and triangulated irregular network interpolation
techniques. With this we could achieve maximum point residuals between 2.5 and 8.2 m. Overall, we note that in
particular the geometric correction of the heavily distorted Hexagon imagery in combination with a lack of clearly
defined stable structures in the imagery that can be used as manual control points, is very challenging. Specif-
ically, often stable gully junctions and more rarely re‐recognizable baydzherakhs were used as control points. The
high usage of gully junctions led to a good precision along the gullies but may have caused larger shifts on the
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relatively heterogeneous ridges (please refer to Table S2 in Supporting Information S1 for parameter details and
resulting precisions). The SPOT‐7 imagery was already provided in an orthorectified state. For the sites BLyaE
and BlyaE no further geometric adjustments were applied. For FadN, where we used the ESRI basemap as a
reference, we applied an automatic global and local co‐registration using the software AROSICS (Scheffler
et al., 2017), providing a maximum shift residual of 8.13 m. The exact geometric stacking precision across the
KH‐9PC and SPOT‐7 imagery is difficult to estimate and varies across the image and away from the control
points. By visual comparison we estimate the accuracy to be in the 5–10 m range. This is sufficient to compare
changes in areas of baydzherakh occurrence. However, individual baydzherakhs and small ponds can be shifted
between the timesteps.

The raw KH‐9PC and SPOT‐7 imagery exhibited strong differences in gray tone distributions. In particular, the
non‐radiometrically corrected KH‐9PC imagery was skewed toward dark colors. For comparability, we therefore
harmonized the gray tone distributions across the different imagery as outlined with the parameters in Table S2 of
Supporting Information S1. For the KH‐9PC imagery, this involved gamma stretching to enhance details within
dark gray areas, specifically on the BLyaE and BLyaS sites. Due to its strong differences, the intensities of the
KH‐9PC imagery from FadN were aligned to the preprocessed KH‐9PC imagery from BLyaE using histogram
matching. Furthermore, we harmonized all images to 8‐bit quantization. While this results in a minor loss of color
grading for the SPOT‐7 imagery, it improves consistency for the GLCM calculation. Despite all these intensity
adjustments, differences with respect to noise levels and gray tones persisted. Notably, a gray tone gradient re-
mains across the non‐radiometrically corrected KH‐9PC imagery. All of these factors influence the GLCM
calculation as described in Section 3.5 (e.g., Brynolfsson et al., 2017).

3.3. Classification Scheme

Based on a visual comparison of the KH‐9PC and SPOT‐7 imagery, we selected a suitable classification scheme.
Figure 2 shows subsets of the KH‐9PC and SPOT‐7 imagery that illustrate the specific degradation patterns we
targeted for the segmentation. On both imagery types, fine‐scale permafrost degradation landforms are readily
visible. Apart from the dark colored thermo‐erosional gully and valley floors, baydzherakhs are visible as
regularly dot‐patterned areas. Thaw ponding is expressed as irregular patterned areas intersected with dark gray to
black colored thermokarst ponds. Largely non‐patterned areas indicate a stable stage without substantial
permafrost degradation so far. On slopes, these areas are sometimes intersected by brighter stripes indicating
water tracks. An additional class was defined for snow‐covered areas, which sometimes were found in deep
gullies even in the late summer images. Thus, we distinguished six dominant classes (Table S3 in Supporting
Information S1): Stable areas, baydzherakhs, ponding areas, gully base, individual thermokarst ponds, and non‐
degradation features such as snow (only present on KH‐9PC imagery).

3.4. Ground Truth Data Set and Labeling

As ground truth data, we labeled the entire area within two patches of 2.4 × 1.2 km for training and validation on
BLyaE (purple rectangles on Figure 1d). For independent model testing, six to eight 0.5 × 0.5 km patches were
additionally added at each study site (black solid squares on Figures 1c–1e). The test patches are deliberately
distributed across the study sites to ensure the detection of prediction biases, caused for example, by gradual
brightness change across the KH‐9PC imagery. The classes snow, ponds and gully base were pre‐labeled with the
software ilastik/LabKit (Arzt et al., 2022; Berg et al., 2019), which provides a RF pixel classification based on
intensity as well as on edge and texture measures. The label refinement and the digitization of additional classes
was done manually in QGis. Our labeling strategy is outlined in Table S3 of Supporting Information S1. In
general, we identified the different degradation stages on lower but class‐dependent zoom levels and then refined
the delineation by zooming in. For the baydzherakh areas, we choose a minimum visibility of three baydzherakhs
as a threshold. Overall consistent labeling was difficult due to (a) different development stages or illumination
effects affecting the visibility of baydzherakhs and (b) gradual boundaries between baydzherakhs, ponding, and
stable areas. We therefore classified the baydzherakh patches into three uncertainty levels according to their
clarity as outlined in Table S3 of Supporting Information S1. Furthermore, we increased the uncertainty
depending on boundary proximity on a 10 m or 20 m wide strip along the boundaries of the baydzherakh and the
ponding areas respectively (distance Equation 5 in Text S1 of Supporting Information S1). Both can be used to
down‐weight the importance of these uncertain areas during the training, as further explained in Section 3.6.
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Figure 3 shows a labeling example with the manually delineated classes and the certainty labels for the SPOT‐7
imagery. Figure S2 in Supporting Information S1 shows an example for the KH‐9PC imagery.

3.5. GLCM Calculation

For the computationally intensive calculation of the GLCM features, we used the GPU‐capable Python library
glcm‐cupy (Faracco, 2023). This module calculates seven GLCM features according to Hall‐Beyer (2017a) and as
summarized in Figure S3 of Supporting Information S1. We tested different sliding window sizes of 5 × 5,
11× 11, 21 × 21, 41 × 41 pixels with a step size of one pixel. These sizes were chosen based on the spatial scale of

Figure 2. Imagery examples from BLyaE showing different degradation stages: (a) KH‐9PC 1979 overview, (b) SPOT‐7
2018 overview, (c, d) KH‐9PC and SPOT‐7 zoom to Baydzherakhs, (e, f) KH‐9PC and SPOT‐7 zoom to thermokarst ponds.
(Background imagery sources: KH‐9PC (USGS, 2018), SPOT‐7 © Airbus DS (2018)).
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the specific patterns of the target classes. The sensitivity of the different window sizes for each target class was
analyzed using SHAP feature importance analysis (see Section 3.6.2). The texture features were calculated
bidirectionally in all directions (East, South‐East, South, and South‐West) and averaged. Furthermore, to evaluate
directionality we calculated the standard deviation between all directions. To avoid edge effects at the tile edges,
we calculated the GLCM features for extended tile sizes and then clipped the results to the desired size.

An example of the calculated GLCM features as well as their sensitivity to the different degradation classes is
depicted in Figure S4 in Supporting Information S1.

3.6. Semantic Segmentation

3.6.1. General Workflow

The overall goal of the image segmentation is to derive a pixel‐wise classification of the imagery such that each
pixel is assigned to a degradation stage. The workflow of the segmentation is sketched in Figure 4. We first
evaluated different segmentation setups using a limited amount of data, including training data only from BLyaE,
to reduce computation time. In the next step, we used the most successful segmentation framework to test spatial
transferability to other sites (BLyaS and FadN). Furthermore, we evaluated performance improvements with site‐
specific model fine‐tuning.

In summary, the tested frameworks comprised classical RF using GLCM features as inputs versus CNN seg-
mentation. For the CNN segmentation, we tested further adjustments such as the application of different
augmentation levels, multi‐feature inputs including GLCM features, different types of normalization, and
weighting schemes.

3.6.2. Random Forest Implementation

For the RF implementation, we used a combination of the Python library scikit‐learn (Pedregosa et al., 2011) and
the GPU capable cuML rapids library (Raschka et al., 2020).

RF classification requires several hyperparameters, which bear trade‐offs in terms of accuracy versus stability
versus computation time (Probst et al., 2019). Therefore, we first ran a grid search using 5‐fold cross validation
(CV). Due to the high computational costs, the input was limited to the first CV training set of the easternmost
training patch on BLyaE (two northernmost sub‐patches, Figure 1d). The tested parameters are specified in Table
S4 of Supporting Information S1.

Furthermore, to identify the best combination of GLCM features and window sizes, we evaluated SHapley
Additive exPlanations (SHAP) feature importance values. They describe the contribution of each specific input
feature on the model's prediction and are implemented in the Python library SHAP (Lundberg & Lee, 2017). As an
input for this analysis, we used all seven GLCM features averaged over all directions and calculated for window

Figure 3. Ground truth data example from BLyaE. (a) Example classification of the SPOT‐7 2018 imagery. (b) Certainty
weights in percentage. They are used to down‐weight pixels in proximity of the ponding and the baydzherakh area
boundaries, to account for the uncertain, gradual boundaries. Also downweighted are patches, where the baydzherakhs are
less pronounced as outlined in Table S3 of Supporting Information S1. (Background imagery source: SPOT‐7 © Airbus DS
(2018)).
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sizes of 5 × 5, 11 × 11, 21 × 21 and 41 × 41 pixels. In addition we used the standard deviation between the
different directions for window size 11 × 11 pixels. Together with the greyscale band this resulted in a total of 36
input features for hyperparameter tuning and feature importance testing. Finally, with the selected hyper-
parameters and the reduced amount of input features we retrained the model for the segmentation evaluation.

3.6.3. CNN Framework Implementation

The CNN framework was implemented using pytorch (Paszke et al., 2019). We choose a default UNet network
architecture, which has been proven successful in many studies (e.g., Loebel et al., 2022; Ronneberger
et al., 2015). In particular, we used a network implementation provided by the Python library segmenta-
tion_models_pytorch (Iakubovskii, 2019), which we set‐up with a resnet34 encoder, five encoder depth layers,
batch normalization and randomly initialized weights. During the training, randomized batches of size 5 were
selected. To optimize the model weights, an Adam optimizer with the hyperparameter of β1= 0.9, β2= 0.999 and
ϵ= 1e–8, suggested by Kingma and Ba (2015), and an exponentially learning rate starting at 0.01 and decaying by
a gamma of 0.95 at every epoch was applied to a cross‐entropy loss function. The training was set to run for 100
epochs during initial training and 50 epochs for fine‐tuning.

3.6.4. Implementation of Specific CNN Framework Adjustments

The framework adjustments as highlighted with orange triangles in Figure 4 were implemented as follows:

Figure 4. Full processing workflow to derive the segmentation into permafrost landscape degradation stages. The workflow
can be subdivided into two steps: (1) The framework evaluation, where we tested different framework adjustments (orange
triangles) using 3‐fold cross‐validation on BLyaE, and (2) the testing and fine‐tuning with the best performing framework
setup identified in (1) and involving the additional sites BLyaS and FadN.
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Augmentation was applied to mitigate the low amount of training data as well as to train invariance against
illumination effects and counteract overfitting (e.g., Dosovitskiy et al., 2016). It encompassed geometric
augmentation including rotation and mirroring as well as color augmentation including contrast, brightness and
gamma adjustments. It was applied to the greyscale imagery and the GLCM features were recalculated
accordingly. Augmentation was applied either 2‐ or 4‐fold at every epoch and at a probability of 50%, whereas the
augmentation strength was enhanced for the 4‐fold augmentation by increasing the perturbation range. All
augmentation was implemented using the Python library albumentations (Buslaev et al., 2020).

Multi‐feature input by including GLCM featureswas tested with the goal to better constrain the training process as
our targets express specific textural properties. For this we included, in addition to the greyscale band, all GLCM
features, which have presented the highest feature importance during the SHAP feature importance analysis based
on the RF segmentation. Similarly, for the window size we used the sizes, which provided the highest SHAP
values.

Normalization is expected to impact the training convergence and stability (e.g., Ranjbarzadeh et al., 2024). We
expected this to be important especially with regards to our data with different illumination properties as well as
strongly differing value distributions for the GLCM features. We applied standardization after calculating the
GLCM features. It was done for each input feature including the greyscale imagery by subtracting the mean and
dividing by the standard deviation, either with respect to the whole training area or with respect to single training
tiles. Applying the standardization based on the single image patch has the advantage that it mitigates gradual gray
tone changes across the KH‐9PC imagery.

The weighting schemewas expected to assist the training process by counteracting the strong class imbalance and
addressing the high labeling uncertainties (e.g., Bressan et al., 2022). For this, we implemented a scheme that
weights the loss function with class‐specific and/or pixel‐dependent weights. Class weights were applied such
that each class is trained with equal importance during training. Thus, for example, the thermokarst pond pixels
were assigned larger weights in the loss function to compensate for their under‐representation in the training set.
High labeling uncertainties were addressed by adding pixel‐specific weights that reduced the importance of pixels
with high label uncertainties in the loss function. A detailed description of the applied weighting schemes can be
found in Text S1 in Supporting Information S1. It was implemented following a similar approach as suggested by
Bressan et al. (2022).

3.6.5. Segmentation Framework Evaluation

As a training input for the framework evaluation, we split the two training patches of BLyaE into three sub‐
patches (purple rectangles in Figure 1d). This allows 3‐fold CV by using the two training patches concur-
rently. This approach maximized the use of the limited training data, resulting in three independent models for
each framework setup while preventing data leakage (with two sub‐patches serving as validation and the
remaining four for training). The required input format for the CNN UNet segmentation are rectangular image
patches. Therefore, we subdivided the training sub‐patches into 256 × 256 pixel tiles with a 42% overlap in both
directions. Without augmentation and by including the KH‐9PC and SPOT‐7 imagery, this provided us 135 tiles
for training and 65 tiles for validation for the CNN segmentation. The training was carried out separately as well
as combined for the KH‐9PC and SPOT‐7 data, allowing to evaluate the performance per data type. Finally, in
order to independently evaluate the spatial model transferability, we tested each model on the distributed test
patches per site and imagery (black solid squares in Figures 1c–1e). The spatial separation of the validation and
the test patches from the training set can be considered as spatially blocked holdouts. They are advantageous over
random cross validations since they account for spatial autocorrelation (i.e., similarity of close pixel intensities or
structure, see Legendre (1993)) and therefore tend to be less prone to inflating the estimated model performance
(Kattenborn et al., 2022).

The selection and evaluation of the best model were based on the validation and test data and included commonly
used performance metrics, such as overall Intersection over Union (micro mIoU) and overall f1 score (micro f1
score). For class‐specific performance we used IoU, precision, false discovery rate (FDR: percentage false
positives with respect to predicted target area) and recall, which is the same as the true positive rate in percentage
(TPR: True positives with respect to true target area). Additionally, we analyzed robustness against overfitting by
observing any divergence between the training and validation IoU. To avoid strong overfitting, we selected the
model at the epoch with the highest class‐averaged IoU (macro mIoU), as long as the difference between the

JGR: Machine Learning and Computation 10.1029/2024JH000550

INAUEN ET AL. 10 of 28

 29935210, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000550 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [08/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



macro mIoU of the training and validation sets was less than 0.1. Furthermore, we analyze the segmentation
quality of the baydzherakh class in relation to its visibility (uncertainty class). We consider this important
additional information, as it is a challenging target class due to its gradual visibility changes and because it is
considered a crucial proxy for permafrost degradation.

3.6.6. Assessment of Model Transferability and Fine‐Tuning

After evaluating the best‐performing segmentation framework on BLyaE, we evaluated the model's ability to
generalize to the additional sites BLyaS and FadN. Furthermore, we investigated the impact of perturbed gray
tone distributions. In order to improve model transferability, we tested site specific model fine‐tuning, where the
model was retrained separately for the sites BLyaS and FadN.This involved five additional fine‐tuning patches
per site (black dashed squares in Figures 1c and 1e). They were selected deliberately in areas where the model
predictions showed poor performance. While retaining the original training and validation input from BLyaE we
included test patches either from BLyaS or FadN for validation and test to ensure good model performance at the
specific additional site. During fine‐tuning the weights of all layers in the pre‐trained model were retrained (i.e.,
no layers were frozen).

4. Results
4.1. Segmentation Framework Evaluation

4.1.1. Random Forest Pre‐Tests and Feature Selection

As a pre‐test to select the hyperparameters and input features for the RF segmentation, we performed a grid search
and SHAP feature importance analysis. The results of both are shown in the Supporting Information S1. The
selected hyperparameter set included a tree count of 500 and a maximum tree depth of 10 (Table S4 in Supporting
Information S1). This configuration achieved the best trade‐off between performance and computation time
(Figure S6 in Supporting Information S1).

The results of the SHAP feature importance analysis highlighted that the sensitivity of the model predictions to
specific window sizes or input features varies depending on the target class (Figure S7 in Supporting Informa-
tion S1). In general, large‐scale features, such as ponding areas, tend to be better defined with GLCM features
derived from larger windows. This contrasts with single thermokarst ponds, for which the greyscale values and
the GLCM mean derived from smaller window sizes had a greater impact on their prediction. Based on this
analysis, we selected the input features for the performance analysis of different segmentation frameworks on the
training area of BLyaE. This included all window sizes (5 × 5, 11 × 11, 21 × 21, and 41 × 41 pixels), using all
seven GLCM features and including the greyscale values while excluding the directional standard deviations,
which showed no impact on the segmentation results.

The performance of four RF segmentation runs, utilizing different window sizes and input features, showed only
slight variations in overall micro mIoU but exhibited significant deviations in class‐specific IoUs (Figure 5). In
accordance with the results from the SHAP feature analysis, the best overall performance was achieved when all
window sizes and all seven GLCM features as well as the greyscale values were included (micro mIoU of 0.61,
pink reference run “b”). Excluding the greyscale values and the directly related GLCM mean resulted in the
lowest micro mIoU of 0.58 (run d), with notable performance decrease primarily on the thermokarst ponds and
gully base classes. Their class‐specific IoUs dropped by 0.45 and 0.26 respectively. Both classes contain small or
thin structures that are, in the case of thermokarst ponds exclusively, and in the case of the gully base mostly,
defined by darker gray tones. In contrast to this, excluding the largest window size of 41 × 41 pixels has led to a
minor IoU decrease of 0.06 on the ponding areas, a class defined by complex large scale patterns.

Across all runs, RF achieved comparably low IoU values for the baydzherakh (run b: 0.37) and ponding area (run
b: 0.28) classes. Regarding the snow class, it should be noted that due to the absence of snow in the SPOT‐7
imagery as well as the uneven distribution of the snow the performance varied strongly between the CV runs
as indicated by the error bars.
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4.1.2. Impact of CNN Framework Adjustments

The framework adjustments influenced the final model performance as well as the degree of overfitting, both of
which varied depending on the target class (Figure 6). The best overall performance in terms of overfitting and
IoU was achieved with 2‐fold augmentation, standardization with respect to the entire training area, and without
the use of any weights (micro IoU of 0.71, marked as reference run in blue).

The type of normalization primarily influenced model convergence. The framework without any standardization
exhibited a slower convergence (run a, Figure 6a), as indicated by the scattering at lower IoU values. Although the
training without normalization resulted in lower performance on the snow class (with an IoU reduction of 0.18)
and a slightly higher tendency for overfitting when using individual tile‐based standardization, there was no
significant effect on the overall micro mIoU, which remained approximately 0.71 across all normalization types.

Augmentation improved model performance across all classes (micro IoU +0.04) and substantially reduced the
degree of overfitting (Figure 6b). Compared to 2‐fold augmentation, the training with 4‐fold augmentation
exhibited a slightly higher tendency to overfit the baydzherakh and ponding area class and a slightly lower overall
performance.

The application of class weights resulted in a strong over‐prediction. This effect was particularly pronounced in
the highly weighted classes (i.e., those with only a small area proportion). For these classes the false detection rate
(FDR) increased by 21.7% for the gully base, 29.7% for the single pond and 36.1% for the snow class (Figure S8 in
Supporting Information S1) and is reflected in an overall micro mIoU reduction of 0.07 (Figure 6c). The
application of uncertainty weights in contrast had no notable effect on the performance.

Including GLCM features, that is,multi‐feature input, in the CNN segmentation did not lead to an improvement of
the classification that justifies the significant increase in computational overhead from recalculating the GLCM
features at every epoch after augmentation. Similarly to the RF segmentation, excluding the greyscale values and
the GLCM mean led to a significant reduction of the IoU on the gully base (− 0.11 IoU), the thermokarst pond
(− 0.18 IoU) and the snow class (− 0.16 IoU) (Figure 6d). For further analysis on the test patches, we therefore
selected the training including all GLCM features with all window sizes as an additional reference for further
evaluation (orange colored reference run “c”)

4.1.3. Performance of Best RF Versus Best CNN Frameworks

Our results show that CNN clearly outperforms RF (Figure 7). On the validation patches, the best performing
CNN framework (reference run “b”) reached a micro mIoU of 0.71 (accuracy 83.2%) compared to 0.61 (accuracy
75.9%) for RF. The same tendency was also observed on the independent test patches (black crosses on
Figure 7a). The class‐specific validation IoU highlights a significant improvement especially for the baydzherakh
(IoU +0.19) and the ponding area (IoU +0.23).

Figure 5. Performance of four random forest training runs using different input features and window sizes. Performance is given in terms of overall and class‐specific
IoU. All values correspond to the average across all three CVs but are displayed separately for training and validation. The error bars on the validation values indicate the
minimum and maximum values of the separate CVs. The colored reference run was selected as the most suitable for further testing.
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Specifically, CNN correctly identified 70.1% (+9.6% compared to RF) of the baydzherakh areas on the test
patches of the KH‐9PC imagery and 68.5% (+16.5%) on the SPOT‐7 imagery (Figures 7d and 7e). In particular,
well established baydzherakhs were detected with high confidence. For all CNN frameworks a minimum of
95.9% (L2, high certainty labels) and 79.1% (L1, medium certainty labels) of the baydzherakhs corresponding to
the respective certainty level were classified correctly (Figures 7b and 7c). Moreover, CNN clearly lowered the
over‐prediction of baydzherakhs on the KH‐9PC imagery and achieved a reduced FDR of 25.3% (− 24.3%)
(Figure 7d). The remaining over‐prediction of baydzherakhs primarily occurred on particularly heterogeneous

Figure 6. Performance of different segmentation frameworks per subplot in terms of overall and class‐specific IoU. The solid triangles correspond to the cross‐validation
(CV) average of the best metric where the macro IoU of the training does not exceed the validation by more than 0.1. In addition, the background scatter displays all
metrics for epoch 30 to 100 indicating potential overfitting if the training metrics strongly exceeds the validation metric. The subplots highlight the effects of the tested
framework adjustments: (a) normalization, (b) augmentation (c) class and uncertainty weighting (d) multi‐feature input with GLCMs. The colored reference runs were
selected for further testing.
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background or along the patch boundaries, where details of the labeled boundary structures could not be resolved
(Figures 8m and 8p).

On the KH‐9PC imagery, RF was not able to achieve any reliable prediction for the ponding areas (e.g.,
Figure 8h). Instead, RF tended to create artifacts of small gully patches in areas of dark pixel values belonging for
example, to ponds. Such a scattering tendency is also reflected in the size distribution of the predicted shapes,
where RF peaked at too small shape sizes (Figure S10a and S10b in Supporting Information S1). CNN improved
the detection of the ponding areas reaching true positive rates (TPR) of 75.8% (+60.9%) and 88.2% (+37.7%) for
the KH‐9PC and the SPOT‐7 imagery respectively. However, a significant over‐prediction remained (FDR be-
tween 47.1% and 54.8%) as CNN generally predicted the areas around thermokarst ponds as ponding areas,
irrespective of the associated heterogeneous background that was used as a labeling criteria (Figure 8).

Figure 7. Performance comparison of the three reference segmentation frameworks on the validation and/or test patches of BLyaE. (a) Performance in terms of overall
IoU and f1 score as well as class‐specific IoU (for validation and test). (b, c) Percentage of correctly predicted baydzherakhs (true positive rate, true positive rates (TPR))
per assigned certainty wights, ranging from less pronounced (L0, ≤60%) to pronounced (L1, >60% and <90%) and to clearly pronounced (L2, ≥90%) (see Figure 3 and
Table S3 in Supporting Information S1), as well as true negative rate (TNR) with respect to the non‐baydzherakh area. (d, e) Left‐hand axis: TPR and false detection rate per
class. Right‐hand axis: Precision and recall. On subplot (b–e), the displayed bar heights correspond to the cross validation mean, while the error bars indicate the minimum
and maximum values.
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Figure 8. Exemplary predictions on test patches of BLyaE using the segmentation frameworks as displayed in Figure 7 (for
the complete set of test patches see Figure S12 in Supporting Information S1). (a–f) Ground truth, (g–x) corresponding
predictions. (Background imagery sources: KH‐9PC (USGS, 2018) and SPOT‐7 © Airbus DS (2018)).
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For smaller‐scale structures, all CNN frameworks provided better performance with class‐specific IoU values
above 0.6. For the gully base, under‐prediction occurred predominantly for thin gullies or where the gully base
showed no strong contrast to the background (e.g., Figure 8p).

A systematic performance difference between the test patches of the KH‐9PC and the SPOT‐7 imagery was
observed especially for the thermokarst ponds (Figure 7a, black crosses). It occurred for all frameworks and
exhibited IoU values that were on average by 0.21 lower on the KH‐9PC test patches. The lower performance on
the KH‐9PC imagery was caused by an over‐prediction of primarily small ponds, as well as an overestimation of
pond sizes (Figure S10 in Supporting Information S1) or can be attributed to misclassifications of shadows or
gully base (Figures 8m and 8n). However, despite these differences it should be noted that the performance of the
CNN training was not impacted by concurrent training. This can be seen for example, in Figures S11a and S11b in
Supporting Information S1 where the performance on the test patches reaches similar or higher performance
irrespective of whether the respective imagery was trained separately or concurrently with the other.

4.2. Performance in Terms of Generalization

4.2.1. Spatial Model Transferability

The performance evaluation on the test patches from the additional sites using framework setups trained solely on
BLyaE (training runs “a” to “d” in Figure 9) revealed particularly low prediction reliability for FadN, while
performance on BLyaS remained within a similar range to BLyaE for most classes. For FadN, the micro mIoU
values were low, ranging between 0.33 and 0.61. In fact, performance across all target classes was reduced. In
particular the baydzherakhs were significantly under‐predicted for the reference run with 2‐fold augmentation
reaching mean TPR of only 21.1% and 35.0% for the KH‐9PC and the SPOT‐7 imagery respectively (Figures
S13g and S13h in Supporting Information S1). This is also reflected on the predicted test patches in Figures 10e–
10h. In particular, the baydzherakhs with bright hilltops or strong shadowing or water inundation in‐between the
mounds remained undetected. Furthermore, broader gully valleys without a dark‐colored base were not recog-
nized. Instead, the shadows along the edges were often wrongly classified as the gully base while single ther-
mokarst ponds remained frequently undetected or were wrongly assigned to shadows (Figures 10f and 10h).

In contrast to the performance analysis on BLyaE, increased augmentation (4‐fold) as well as including the
GLCM features clearly improved the IoU of the baydzherakhs at FadN for the KH‐9PC imagery (arrow in
Figure 9 baydzh). However, this was not the case for the SPOT‐7 imagery. Furthermore, it led to a decreased
performance on the thermokarst ponds, in particular for BLyaS (arrow in Figure 9 ponds). Overall, we observed
that the impacts of the different framework adjustments are complex and differ depending on class, imagery type,
and study site.

Figure 9. Performance comparison on the additional test sites BLyaS and FadN. Segmentation framework “a” to “d” were solely trained on BLyaE. Framework “e” was
additionally fine‐tuned with training data from FadN or BLyaS. The performance is displayed in terms of overall IoU and f1 score as well as class‐specific IoU. The
markers correspond to the cross validation average, while the error bars display the minimum and maximum values.
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Figure 10. Exemplary predictions on test patches of the additional site FadN using the CNN segmentation frameworks as displayed in Figure 9 (for the complete set of
test patches see Figures S14 to S20 in Supporting Information S1). (a–d) Ground truth, (e–t) predictions from the model trained solely on data from BLyaE and (u–x)
predictions from the model fine‐tuned with site‐specific training patches from FadN. (Background imagery sources: KH‐9PC (USGS, 2018) and SPOT‐7 © Airbus DS
(2018)).
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A clear and consistent performance improvement was however achieved after separately retraining the model
with five fine‐tuning patches on FadN and on BLyaS, which were specifically placed at areas of poor segmen-
tation. This particularly improved the detection of baydzherakh areas on FadN and resulted in an TPR of 64.4%
(IoU: 0.50) and 67.0% (IoU: 0.58) for the KH‐9PC and the SPOT‐7 imagery respectively (Figure 9 and Figures
S13g and S13h in Supporting Information S1). However, in some cases mislabeling of low lying ponding areas
persisted (Figure S14u in Supporting Information S1). Similarly, also the mislabeling of shadows as ponds or the
inability to discriminate between gully base and shadows persisted at location with abrupt topographic changes on
the imagery of FadN (Figures 10v and 10x).

4.2.2. Robustness Against Gray Tone Changes

Changing the gray tone distribution of the target imagery led to a severe performance decrease, particularly for the
thermokarst pond and the snow class (Figure S21 in Supporting Information S1, perturbed KH‐9PC gray tone
clipped to mean±std4). While the thermokarst ponds remained undetected in the reference run with 2‐fold
augmentation, the snow class was severely over‐predicted (run d in Figure S21c and example prediction in
Figure S22d in Supporting Information S1). In the case of the thermokarst ponds, 4‐fold augmentation improved
the detection rate to TPR 30.8% (+23.4%), while also increasing the FDR to 43.3% (+16.8%). Nevertheless,
severe thermokarst pond under‐prediction persisted also irrespective of the normalization type (Figures S22e and
S22b in Supporting Information S1).

5. Discussion
The goal of this study was to find a suitable segmentation approach that allows quantifying the extent of
permafrost degradation stages at the landscape scale and on historical and recent greyscale imagery. The
assessment was done in two main steps according to which the discussion is divided. First, the best CNN
framework was evaluated based on the test site BLyaE. Second, we tested the model's ability to generalize to other
sites (BLyaS and FadN). Please note that in the following the stated metrics refer to the CV‐averaged values.

5.1. Segmentation Framework Evaluation

5.1.1. CNN Outperforms RF for Landscape‐Scale Permafrost Thaw Detection

CNN segmentation using just greyscale imagery as input feature clearly outperformed RF including GLCM
texture features and provided better performance on all classes. This was reflected in a significantly higher overall
mIoU of 0.71 (accuracy 83.2%) for CNN compared to 0.61 (accuracy 75.9%) for RF (Figure 7, reference
framework “a” and “b”). Unlike CNNs, which can learn contextual information at multiple scales through
convolutional layers (LeCun et al., 2015), RF in this study learns the contextual information solely from the
GLCM features assigned to each pixel. Although incorporating multiple GLCM window sizes and input features
helps to mitigate the challenges in segmenting classes with varying scales and characteristics (as shown in
Figure 5 and the feature importance analysis in Figure S7 of Supporting Information S1, and similarly observed
by Coburn and Roberts (2004) and Liu et al. (2023)), these features were not sufficiently discriminative to
separate the target classes at a pixel level. This limitation was already indicated by the overlapping class dis-
tributions in the sensitivity analysis (Figure S4 in Supporting Information S1), and was particularly problematic
for texture‐defined structures such as baydzherakhs and ponding areas. In comparison to CNN, RF is more prone
to scattering, often misinterpreting local spots within textured areas as distinct features based on color (e.g.,
thermokarst ponds or thermo‐erosional gully bases). Similar findings were reported byMboga et al. (2017), where
CNN with up to five convolutional layers outperformed classical supervised classification using SVM with
GLCM features for settlement detection or by Garg et al. (2021) who compared the use of the deep learning model
DeepLabv3+ to RF including textural descriptors for segmenting PolSAR imagery for urban land cover mapping.
Both of these studies showed a higher accuracy and smoother segmentation with less scattering for the deep
learning model.

Thus in summary, our study suggests that, despite limited labeling data, CNN clearly outperforms RF in seg-
menting complex multi‐scale and texture‐defined target classes. Moreover, CNN, when used without GLCM
features, is computationally advantageous, as it learns contextual features directly from greyscale imagery,
eliminating the need for complex hand‐engineering and feature selection.
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5.1.2. CNN Framework Adjustments Did Not Significantly Improve Model Performance

In order to improve the CNN segmentation, we tested different framework adjustments. Despite our expectation
that GLCM features enhance the segmentation by adding additional contextual information, their inclusion did
not provide a significant improvement of the site‐specific segmentation at BLyaE (Figure 6d). Instead, it led to
substantial computational overhead due to the recalculation of the GLCMs at every epoch after augmentation.
Similar observations were reported by Loebel et al. (2022), who did not find a clear improvement by including
GLCM features in the CNN segmentation of glacier calving fronts. This suggests that the required discriminative
features could be learned by the CNN network directly from the available raw training data. However, unlike
Loebel et al. (2022), we did not observe an increased tendency for overfitting. This is likely because we recal-
culated the GLCM features at every epoch after augmentation, rather than using offline augmentation where both
the augmentation and GLCM calculation are performed outside the training loop.

In terms of the weighting schemes, the significant decrease in performance (micro mIoU reduction of 0.07,
Figure 6c) due to class weighting is surprising, especially since class weighting has been successfully applied and
shown to be beneficial in other studies (e.g., Ronneberger et al., 2015). However, we suggest that fine‐tuning the
weighting ratio might mitigate the significant over‐prediction that was observed for all weighted classes (FDA
>35.2% and an increase of 15.2%–36.1% compared to the segmentation without class weighting, Figure S8 in
Supporting Information S1). Similarly also for uncertainty weighting, which was suggested by Bressan
et al. (2022), fine‐tuning the weighting factors might improve its impact.

Overall, the framework evaluation on BLyaE, apart from the superiority of augmentation, revealed no significant
impact of the different framework adjustment (Figure 6). This is likely because the available raw training data
sufficiently represents the target classes on BLyaE, and labeling inconsistencies and unclear class representations
may have hindered further performance improvement. Figure S11c in Supporting Information S1 also supports
this, showing that training on just one patch did not significantly affect performance.

5.1.3. Segmentation Quality Is Good Despite a High Label Uncertainty

During the model evaluation on site BLyaE, we achieved the best CNN segmentation performance with 2‐fold
augmentation, standardization to the entire training area, and no weight usage (run ’b’ in Figure 7). The aver-
aged micro IoU was 0.71, and the accuracy was 83.2% on the validation set. We consider this a good achievement,
even though similar studies on panchromatic historical imagery have reached higher performance. For example,
Mboga et al. (2020) achieved an overall accuracy between 87.33% and 98.83% by segmenting three classes
(building, high vegetation and mixed/bare/low vegetation) using a UNet CNN. Deshpande et al. (2021)
segmented five classes (barren land, built‐up area, agricultural land, water‐body, vegetation) and achieved an
overall accuracy of 98.3%–98.99%. The lower accuracy of our segmentation can be attributed to our more
granular (due to the higher imagery resolution) but subtle and less contrasting target classes with gradual
boundaries and high intra‐class variability. In contrast to clearly distinct classes, such as buildings, water bodies,
vegetation, and barren ground, our target classes are more challenging to learn during the training process and
objective ground truth labeling is difficult. The latter additionally impedes the final performance as annotation
errors can lead to inaccurate evaluation metrics guiding the model to adapt to errors (Fernández‐Moreno
et al., 2023).

For our imagery, achieving consistent labeling was a challenge, both within individual imagery (e.g., dealing with
gradual boundaries) as well as across the KH‐9PC and SPOT‐7 imagery. For example, the higher scattering and
less smooth appearance of SPOT‐7 imagery made differentiating noise from baydzherakhs more difficult. The
different gray tone distribution of the imagery impacted the delineation of dark‐colored thermokarst ponds. Their
boundaries are gradual and follow the transition from deep‐to shallow‐water to wet surfaces or vegetation.
Therefore, with changing gray tone distribution, it is difficult to visually define a clear greyscale threshold
dividing water surfaces from ground. This was especially a challenge for the non‐radiometrically corrected KH‐
9PC imagery, which also exhibited varying gray tones across the imagery.

These challenges are reflected in the class‐specific performances, which exhibit rather large differences
(Figure 7a). While the metrics evaluation on the test patches demonstrate accurate predictions for the stable areas
(smallest IoU of 0.77) and the gully base (smallest IoU of 0.65), the overall metrics is reduced for the baydz-
herakhs (smallest IoU of 0.57) and ponding areas (smallest IoU of 0.43). This is again likely a result of the latter
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two being less distinct due to their solely pattern‐based definitions, their gradual and fuzzy boundaries, and high
representation heterogeneity within the class.

Nevertheless, the uncertainty analysis shows that well‐established baydzherakhs are predicted with high certainty
(minimum TPR of 79.1% for the medium and 95.9% for the high certainty class; minimum true negative rate of
94.4%, Figures 7b and 7c). Thus, our segmentation provides a reliable but conservative estimate of baydzherakhs
occurrence, which can serve as a proxy for significant degradation of permafrost with ice‐rich polygonal ground.
In addition, the segmentation might even be more consistent than manual labeling, as the model identified
baydzherakhs that were missed during labeling. Moreover, we labeled the baydzherakh boundaries at high but due
to their fuzziness likely subjective detail. Prediction errors along these boundaries are therefore expected but have
lowered the final performance metrics.

The metrics of the ponding areas, whose boundaries were particular unclear for annotation, show strong over-
fitting and over‐prediction (FDR up to 54.8%). This indicates that the model was unable to learn the intended
structures. It rather learned this class's connection with thermokarst ponds. Thus, the segmentation of the ponding
areas should be interpreted with caution. However, it can still serve as a rough estimation about areas of increased
ponding.

The segmentation performed well for the thermokarst ponds on the SPOT‐7 test patches (IoU: 0.73, TPR: 86.2%,
FDR: 17.5%). However, we observed a large over‐prediction of thermokarst ponds on the KH‐9PC imagery (IoU:
0.53, TPR: 86.1%, FDR: 42.2%). This is likely connected to the above‐mentioned labeling inconsistencies.
Nevertheless, Figures S10c and S10d in Supporting Information S1 shows that wrongly predicted ponds (arti-
facts) are predominantly smaller than 10 pixels. When comparing predictions over time, we therefore suggest
removing ponds smaller than 10 pixels (22.5 m2). Furthermore, we suggest to compare pond counts within
specific size ranges rather than the absolute pond areas, as the exact pond area highly depends on the gray tone
which is more variable when comparing across different historical image types. This approach allows focusing on
the persistence or drainage of larger thermokarst ponds. Overall, it should be noted that small thermokarst ponds
are an important source of CH4 and CO2 emissions (Holgerson & Raymond, 2016). Additionally, mapping small
ponds is necessary to better understand hydrological dynamics, such as for example, the coalescence of smaller
ponds into larger ones. Therefore, finding effective automated methods to detect small thermokarst ponds from
radiometrical diverse historical imagery is a crucial but still outstanding task. It is particularly challenging, as
small‐scale ponds might not necessarily be thermokarstic in origin but could also be ephemeral and be formed or
strongly influenced by rainfall or snow melt. A consistent interpretation of individual pond areas over time would
require multi‐seasonal imagery with accurate geometric alignment to understand seasonal fluctuations. While
classical detection methods to extract small thermokarst pond areas include image thresholding or unsupervised
k‐means classification on modern high‐resolution panchromatic, near‐infrared, or X‐band SAR satellite imagery
(Muster et al., 2017), a more advanced method focused on the use of refined U‐Nets on very high‐resolution
satellite imagery to extract pond change over time (Abolt et al., 2024). However, these methods were specif-
ically developed using radiometrically well calibrated recent satellite imagery. Our data set did not allow for this
level of analysis. Furthermore, achieving a high enough geometric, pixel‐wise overlap that would allow
comparing the persistence of very small ponds between the historical KH‐9PC and recent satellite imagery has
shown to be very challenging due to the high initial geometric distortion of the KH‐9PC imagery. For recent
dynamics, multispectral satellite imagery could provide improved differentiation of water bodies as well as higher
geometric precision at inter‐seasonal time scales as demonstrated by Freitas et al. (2024). An alternative approach
is to detect wider areas affected by ponding, rather than individual thermokarst ponds as these areas are a clearer
indicator of thermokarst degradation. However, as demonstrated in this study, ponding areas were, due to their
heterogeneous appearance and fuzzy boundaries difficult to be learned and delineated by the segmentation model.
Including additional ponding classes, such as areas with polygonal pond arrangements (e.g., Figure S14a and
S14c in Supporting Information S1), which are already more prevalent at FadN, may help to better constrain
different types of ponding areas.

5.2. Model Generalization

5.2.1. Spatial Transferability is Challenged Due To Different Class Representations

When transferring to the other test sites, we observed a reduced model performance on the imagery from FadN
(mIoU between 0.46 and 0.57), while the model performed well on BLyaS (mIoU between 0.68 and 0.71)

JGR: Machine Learning and Computation 10.1029/2024JH000550

INAUEN ET AL. 20 of 28

 29935210, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000550 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [08/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



(Figure 9). This is not surprising as the KH‐9PC imagery from BLyaE and BLyaS originate from the samemission
set and thus have similar image properties (Table S1 in Supporting Information S1). The degradation stages on
FadN also exhibit distinct characteristics, such as baydzherakhs with bright hilltops and frequently inundated
troughs between mounds or valleys of steeper topography creating more shadowing (Figures 10f and 10h). Such
structures were not present in the training data from BLyaE. Consequently, the segmentation struggled to
accurately assign these structures. This is a common issue with deep learning networks known for their limited
spatial transferability and several studies have documented this problem. For instance, Mainali et al. (2023)
encountered a decline in performance on untrained wetland segmentation sites due to complex and site‐specific
data patterns. Similarly, Yang et al. (2021) reported lower performance when segmenting damaged buildings on
untrained sites. They attributed the limited model transferability to different building structures and increased
labeling challenges at specific sites. Wijesingha et al. (2024) emphasized that both spatial and temporal trans-
ferability was reduced for RF and 2D‐CNN networks in agricultural land cover mapping. In our case, all imagery
was acquired between the end of July to mid‐August. However, seasonal weather conditions can to some extent
impact the appearance of the degradation stages. For example, increased vegetation growth (though limited in the
high Arctic) or extent of saturated or water‐inundated areas can affect the visual appearance. Additionally,
illumination conditions such as the sun angle and shadowing can impact image contrasts and for example, the
visibility or appearance of the baydzherakhs. Thus, similar to spatial transferability, we expect temporal model
transferability also to have some limitations.

In contrast to the tests on BLyaE, enhanced augmentation and including GLCM features improved the seg-
mentation of the baydzherakhs on the SPOT‐7 imagery of FadN (IoU increase from 0.34 to 0.43 and 0.53
respectively, Figure 9), while for the KH‐9PC data the performance however remained at a low IoU between 0.2
and 0.25. The partially improved performance when including the GLCMs is likely a result of the additional
texture information increasing the weight of texture characteristics in the segmentation. This aligns with the
studies of Tan et al. (2020) and H. Zhang et al. (2021) which showed that including GLCM texture information
can improve classification robustness in the case of sparse label availability but high intra‐class variability.
Overall, we conclude that the CNN framework adjustments clearly had a stronger impact on the additional sites
compared to BLyaE, in particular with the augmentation and the inclusion of GLCM features. However, the
impacts were difficult to predict and varied depending on class, site and imagery type. The lower impact of the
framework adjustments on BLyaE can be explained by the relatively low amount of labeling data, which covers
the variety and structures of BLyaE and BLyaS but is limited for good performance on FadN.

5.2.2. Gray Tone Distribution of the Target Imagery Affects Feature Detectability

To assess the effect of gray tone shifts, we examined the model's performance on an image with adjusted gray
tones (Figures S21 and S22 in Supporting Information S1). The results demonstrate that classes defined by their
intensity levels are significantly impacted by gray tone alterations. In our specific case, the ponds became nearly
undetectable (reduction of mean TDR from 86.1% to 7.5%, reference run “d” in Figure S21 in Supporting In-
formation S1), while the snow class was strongly over‐predicted (increase of FDR from 31.1% to 58.8%). Domain
shifts caused by different intensity distributions are a well‐known challenge, particularly in biomedical imaging,
when CNN models trained on single‐band imagery are applied to data from other sensors or devices (Guan &
Liu, 2022). Advanced augmentation can address domain shift problems by promoting invariance (Dosovitskiy
et al., 2016). In our study, extended 4‐fold augmentation improved the pond‐IoU for the perturbed gray tones from
0.07 to 0.24, but slightly decreased it on the original imagery (pond‐IoU from 0.53 to 0.50) (Figure S21a in
Supporting Information S1). This effect was similarly observed by Güllmar et al. (2022), who analyzed the
sensitivity of CNN models to input imagery with altered orientation and intensity, as well as the efficiency of
augmentation. In their study, they found a significant dependence of segmentation performance on input varia-
tions and that augmentation has a positive impact primarily on perturbed test data, while it can even have a
negative impact on the training population. However, on our perturbed image example, despite the improved pond
detection with increased augmentation (increase of TDR from 7.5% to 30.8%), a clear under‐prediction of
thermokarst ponds persisted and over‐prediction worsened (FDR increased from 26.5% to 43.3%). This finding
suggests that histogram matching or similar imagery adaptation is required when applying our standard CNN
model to imagery with gray tones strongly deviating from the training set.

Furthermore, in the case of the radiometrically non‐corrected KH‐9PC imagery, changes in gray tone were the
most obvious differences between images from different missions. These differences could not be completely
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eliminated by the histogram matching as exemplarily shown by not well aligned histograms of the pre‐processed
KH‐9PC per test site (Figure S5a in Supporting information S1). Furthermore, other acquisition or sensor specific
variations in imagery characteristics (resolution, contrast, sharpness, or noise) are expected to impact segmen-
tation performance in similar ways as they lead to a difference in the marginal distribution of the feature space in
the source and the target domain, also termed as co‐variate shift (Ma et al., 2024). In particular for the KH‐9PC
imagery at FadN, such influences likely contributed to its reduced performance. This is suggested by the relatively
strong deviation of its image properties in comparison to the training set even after histogram matching (local
standard deviation and entropy in Figure S5c in Supporting Information 1). Sophisticated analysis methods such
as for example, the domain shift analyzers as suggested by Kushol et al. (2023) or measures of area of appli-
cability suggested by Wijesingha et al. (2024) could provide an option to detect areas of strong domain shifts
requiring model fine‐tuning.

Our study further illustrates the necessity of involving the different sensor types in the training process. For
instance, the model trained only on the KH‐9PC data reached a very poor performance on the test patches of the
SPOT‐7 imagery (CV averaged micro mIoU of 0.53) compared to the KH‐9PC test patches (mIoU 0.75) (Figure
S11b in Supporting Information S1, run “a”). This was similarly shown in the context of resolution changes byW.
Zhang et al. (2020), who found a strong performance decrease on IWP delineation when applying a model trained
on WorldView‐2 imagery (˜0.5 m resolution) to unmanned aerial vehicle (UAV, 0.02 m resolution) data or vice
versa.

5.2.3. Site Specific Fine‐Tuning Improves Spatial Transferability

To improve the spatial transferability of our model to the test sites BLyaS and FadN, we used additional site
specific fine‐tuning patches for model retraining (Figure 1, black dashed patches). Our results confirm that this is
an effective way to improve performance, as demonstrated by several other studies (e.g., Li et al., 2024; Mainali
et al., 2023). At FadN, just five fine‐tuning patches significantly improved performance on the baydzherakh class
(IoU increase from 0.20 to 0.34 to 0.50 and 0.58 for KH‐9PC and SPOT‐7, respectively) achieving comparable
levels to those at BLyaE (0.57 and 0.59 for KH‐9PC and SPOT‐7). However, mislabeling persisted in features
such as thermokarst ponds and thermo‐erosional gullies, due to the extended shadowing (Figure 10v) as well as in
some areas with low‐lying ponding areas (Figure S14u in Supporting Information S1). Additional labeling would
be required to learn these challenging conditions. However, we also observed that fine‐tuning the model can lead
to reduced performance in specific classes, as seen in our case with the gully class at BLyaS. A potential solution
to retain the strengths of each model while avoiding site‐specific limitations could be to use ensemble predictions,
where, in the simplest approach, the predictions of independently trained models are averaged (e.g., Roshan
et al., 2024).

Furthermore, to alleviate the need for large amounts of additional data for fine‐tuning, the use of synthetically
generated training data for example, through Generative Adversarial Networks (GANs) (Goodfellow et al., 2014)
could be tested. Moreover, there are many recent studies demonstrating successful applications of domain
adaptation methods, which aim at minimizing the domain gap (Ajith & Gopakumar, 2023; Guan & Liu, 2022) or
domain generalization methods, which allow generalization to unseen domains (J. Wang et al., 2023). Such more
sophisticated methods could strengthen detection as fine‐tuning does not automatically lead to overall robustness
and generalizability but can be prone to overfitting (Mehdipour Ghazi et al., 2017).

5.3. Applications for Mapping Landscape‐Scale Thaw Impacts

Despite the challenges described in the previous section, CNN segmentation has proven to be a promising method
for analyzing permafrost thaw impacts at landscape‐scale in the High Arctic. It enables mapping of fuzzy
landforms at unprecedented level of detail across larger regions, where manual labeling would be both too time‐
consuming and difficult to maintain consistency. The CNN segmentation is scalable in space and time. By fine‐
tuning with multiple test patches, the method becomes adaptable to other study sites. Using test patches,
distributed across all study sites and covering the main image characteristics (e.g., gray tones) and class repre-
sentations (e.g., different appearance of baydzherakhs), is essential to assess consistency and detect potential
biases, such as those caused by domain shifts or variations in illumination conditions.

Our approach highlights the value of historical KH‐9PC data also for quantitative analyses. When compared to
more recent SPOT‐7 data, the segmentation can be used to analyze typical long‐term change patterns and
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trajectories, whose spatial relationships can also be examined. Furthermore, factors driving permafrost degra-
dation or feedback mechanisms can be inferred through correlation or susceptibility analyses between the seg-
mentation and geomorphological factors (e.g., slope, aspect) or environmental variables (e.g., snow cover,
vegetation). While several studies have conducted such analyses, large‐scale studies often focus on single
degradation landforms (e.g., Luo et al., 2024; R.Wang et al., 2023), similar to most studies applying deep learning
techniques (e.g., Nitze et al., 2021; Witharana et al., 2020). However, particularly in gully dominated landscapes,
we suggest that the dynamics between degradation stages can be important (e.g., the impact of changed drainage
conditions due to thermo‐erosional gully development). This was shown in a similar study by Jorgenson
et al. (2022), who manually mapped degradation stages and found that increased drainage slowed down
permafrost degradation. The ability to automatically segment several degradation stages over large areas facil-
itates more such studies and could also be used to inform model parametrization (e.g., similar as done in Aalstad
et al., 2018). In particular, with respect to the dynamic gully landscape, a better understanding of long‐term
degradation dynamics and processes is essential for future prognoses and predictions.

Finally, it should be noted that using single‐band panchromatic imagery made the segmentation more challenging
due to its limited information content. In this study, we deliberately analyzed greyscale imagery to utilize his-
torical satellite imagery, which allows detecting long‐term permafrost degradation. However, using recent remote
sensing imagery with multispectral bands would provide additional information content. For example, the NIR
band is expected to significantly improve the delineation of thermokarst ponds by better differentiating between
vegetation, water bodies and shadows.

6. Conclusion
In this paper, we tested various segmentation frameworks to quantify permafrost degradation at the landscape‐
scale using historical and recent panchromatic satellite imagery. In contrast to most other studies, which
mainly focus on the detection of single‐class degradation landforms and more recent satellite imagery, our goal
was to achieve a multi‐class segmentation that allows studying long‐term dynamics in the extent of different
permafrost degradation stages.

The performance tests showed the following main outcomes:

• Segmentation framework selection: CNN achieved superior performance over RF, even with limited labeling
data. Model robustness improved with augmentation, but class weighting reduced performance. Including
GLCM texture features in CNN had a weak effect on sites well‐represented in training data but increased
robustness for detecting complex target classes on new sites with different class representations.

• Class‐dependent performance: The impact of framework adjustments varied depending on class specifica-
tions, imagery type, and study site. These differences can be attributed to the unique characteristics and scales
of the target classes in the segmentation model. For instance, texture played a significant role in detecting
baydzherakhs, while pixel intensity was crucial for identifying individual thermokarst ponds. This finding
further emphasizes the need for a multi‐scale segmentation approach.

• Model transferability: Targeted model fine‐tuning using a limited amount of fine‐tuning patches, which
contained class representations not included in the initial training data provided an efficient way to improve
model transferability. Imagery from different missions showed considerable domain shifts due to varying gray
tone distributions. Histogram matching to adapt the target imagery to the training imagery was essential for
our final model to detect intensity‐defined classes such as the thermokarst pond and snow classes.

• Overall performance: When validated with distributed test patches and fine‐tuned for additional sites, our
segmentation approach demonstrated high confidence in delineating clearly established baydzherakhs, which
can be seen as a proxy for permafrost thaw. Therefore, it provides a good but conservative estimate for strong
permafrost degradation in ice‐wedge polygonal landscapes of the Yedoma region. Satisfactory performance
was also achieved for the gully base, thermokarst ponds larger than 10 pixels, and the snow class. However,
performance was low for poorly defined and more fuzzy ponding areas and some misinterpretation of shadows
as thermokarst ponds or gully base at FadN remained.

Our study demonstrates that CNN segmentation can be a powerful tool even for subtle and heterogeneous target
classes on historical and recent satellite imagery of different quality. It is able to differentiate permafrost
degradation stages and can be expanded in space and time to reveal typical long‐term change trajectories at
landscape‐scale in the High Arctic. This provides a foundation for large‐scale quantitative studies on spatial

JGR: Machine Learning and Computation 10.1029/2024JH000550

INAUEN ET AL. 23 of 28

 29935210, 2025, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JH

000550 by H
elm

holtz-Z
entrum

 Potsdam
 G

FZ
, W

iley O
nline L

ibrary on [08/09/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



dependencies, dynamics and feedback mechanisms. Particularly in gully‐dominated landscapes, it addresses a
critical knowledge gap within permafrost research.
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