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Overview

High-dimensional data assimilation applications

Software
Methods
Open points
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Data Assimilation — Combining Models and Observations

Models Observations

Combine both sources of information

quantitatively and optimally by computer algorithm

= Data Assimilation

i
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High-dimensional
Data Assimilation Applications

improving model predictions

Nerger — Ensemble DA in Earth System



TP sAESM
Assimilation into atmosphere-ocean coupled model: AWI-CM iﬁ;,-g;v;;,;egmmMm,e,,mg
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Atmosphere Coupler library Ocean
+ land surface OASIS3-MCT + sea ice
96 processor cores 192 processor cores

Two separate programs for atmosphere and ocean

Goal: Develop data assimilation methodology for
cross-component assimilation (“strongly-coupled™)

“assimilate ocean observations into the atmosphere”
for improved model simulations *
Nerger et al. (2020). Geoscientific Model Development, 13, 4305-4321, doi:10.5194/gmd-13-4305-2020 @ ANI
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Regional ocean forecasting

Operational configuration of Copernicus Marine -
Forecasting Center for Baltic Sea (BAL-MFC)

= Model setup
= Ocean model NEMO 60°N
= Coupled to ecosystem/carbon model ERGOM
= 1.8 km resolution, 56 layers
= Time step 90 sec

= 192 processor cores
on compute cluster 50°N |

Atmosphere N,

55°N
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Observations - Ocean

Satellite Chlorophyll: 2015-03-08
e T = 10t

Remote sensing (satellites, radar, planes)
= Only observe ocean surface

= E.g. temperature, sea surface height, chlorophyll

mg Chl/m3

Ships / stations / drifters / floats (‘in situ’)
= Measurements inside the ocean
= Very sparse data

60°N ¥

Example ‘ARGO floats’ SON

= QObservations of temperature, salinity

= down to 2000m

= Velocities from displacement 30°S

= World ocean covered by 4166
devices - very sparse 608 It




Applying data assimilation

Integrate observations and models
= Models provide dynamical information

= Observations provide sparse data on real world
= Need uncertainty estimates for model state and observations
= variances and error-correlations

= Apply ensemble-based data assimilation
= Using O(10) — O(100) model states (more not feasible)
= Costly to compute (O(103) — O(103) processor cores
= Large amount of output data (tera-bytes)

= Small sample of probability distribution of model state
= Large sampling errors

*
Nerger — Ensemble DA in Earth system @ AN/



Data Assimilation - Possibilities

“Observation-constrained (ensemble) modeling”
Aims

1. Optimal estimation of some modelled system:

* initial conditions (forecasting - weather/ocean/etc)

- state trajectory (reanalysis - temperature, concentrations, ...)
* process parameters (ice strength, plankton growth, ...)

 fluxes (heat, primary production, ...)

- boundary conditions and ‘forcing’ (wind stress, ...)

2. More advanced: Improvement of model formulation and observations
 detect systematic errors (bias)
* revise parameterizations based on parameter estimates

 detect relevant observations for observation system design

sd
Nerger — Ensemble DA in Earth system @ NV/
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Software

How we realize DA applications

Nerger — Ensemble DA in Earth System



Computing challenges and features
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High-dimensional models
= Costly to compute
= Large amount of output data

= Large size of state vectors
= Containing all relevant model fields
= Usually distributed due to parallelization

Ensemble-based data assimilation
= Multiply computing cost (parallel or sequential)
= Full ensemble output would multiply amount of output data
= Usually only write ensemble mean and variance
= Computing time of model dominates over assimilation method
= Assimilation often only 1-5% of total run time

Nerger — Ensemble DA in Earth system
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PDAFParaIIeI

PDAF - Parallel Data Assimilation Framework Data Assimilation

Framework

A unified tool for interdisciplinary data assimilation ...

Focus on
o ==RVAnlEInEhiEliI Code, documentation, and tutorial available at

* Performance for https://pdaf.awi.de
complex models

" Flexibility to extend github.com/PDAF/PDAF
system

12

provide support for parallel ensemble forecasts

provide DA methods (EnKFs, smoothers, PFs, 3D-Var) - fully-implemented & parallelized
provide tools for observation handling and for diagnostics

easy implementation with (probably) any numerical model (<1 month)

a program library (PDAF-core) plus additional functions & templates

run from notebooks to supercomputers (Fortran, MP| & OpenMP — model compatibility)
ensure separation of concerns (model — DA method — observations — covariances)

first release in year 2004; continuous further development

Open source:

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118



PDAFParaIIeI
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pyPDAF Data Assimilation
Framework
Python interface to PDAF -
C . - : o User coded
= allows to code all application-specific functionality in Python Python _ Driver and call-
(not touching Fortran!) DA system back functions
= assimilation analysis computed inside PDAF I -

(excellent performance due to compiled Fortran code)
supports all functionality of PDAF including MPI-parallelization
= online coupling (e.g. for Python-coded models)
= offline coupling (using files from model runs)

PDAF
demonstrated low overhead for localized ensemble filters Qi)

—

installation using Conda

github.com/yumench/pyPDAF

Y. Chen et al. (2024). Geoscientific Model Development, submitted

Pre-compiled
in Conda —
ready to use

aAWV/



Online-Coupling — Assimilation-enabled Model

PDAFParaIIeI

Data Assimilation
Framework

14

Couple a model with PDAF

= Modify model to simulate
ensemble of model states

= Insert analysis step/solver to be
executed at prescribed interval

= Run model as usual, but with
more processors and additional
options

= EnOl and 3D-Var also possible:
= Evolve single model state

= Prescribe ensemble
perturbations or covariance

Single program

Forecast 1

Forecast 2

Forecast 40
>/

“§(# Observation

"f@k

Analysis
(EnKF)

Update fields
for next forecast

Initialize Ensemble
ensemble forecast

Analysis step in
between time steps

SWAVAY/j
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Methods

Ensemble-based data assimilation

Estimation by joining model and observational data

Nerger — Ensemble DA in Earth System



Data Assimilation — Model and Observations

16

Two components:

1. State: x € R" (contains different model variables)

Dynamical model
x; = M;_1;[xi—1]

2. Observations: y R™ (contains different observed fields)

Observation equation (relation of observation to state x):
y = H [x]

Dimensions:
state n: 106 — 109
observations m: 104 — 106

Nerger — Ensemble DA in Earth system
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Linear and Nonlinear Ensemble Filters

17

- Represent state and its error by ensemble X of N, states

(use ensemble perturbation matrix X = X — X))

 Forecast:
- Integrate ensemble size /N, with numerical model

* Analysis step:

Dimension of correction
(error) space :
Ne_ 1

- update ensemble mean X =%/ + X'"Tw

« update ensemble perturbations X't = X’fW

(both can be combined in a single step)

« Ensemble Kalman & nonlinear filters: Different definitions of

- weight vector W (dimension N,)

Transform matrix W (dimensionNe X N¢)

Nerger — Ensemble DA in Earth system
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ETKF (Bishop et al., 2001) / ESTKF (Nerger et al., 2012)

= Ensemble Transform Kalman filter / Error Subspace Transform Kalman filter
= Assume Gaussian distributions

= Transform matrix (Lgrxr = X/ or Lgsrxr = X/T) Algorithms designed

A—l _ (Ne L 1)1’ + (HL)TR—IHL for r.naximur.n.
computational efficiency

= Mean update weight vector

- _ — Excellent parallelization
_ Tp-—1 _
w=A(HL)'R (y fo) possibility when combined
(depends linearly on observation vector y) with localization
=  Transformation of ensemble perturbations . Llpegr fiIt.er:
1/9 = Gaussian distributions assumed
W = /N, — 1AY2A

= Linear in effect of y

A : mean-preserving random matrix or identity

Note: W depends only on R, not observation y

i
Nerger — Ensemble DA in Earth system @ MI



Covariance inflation and localization

19

Inflation

sampling errors in ensemble result in too low variance
counter by increasing ensemble variance before analysis
Efficient utilizing factor o in transform matrix

Localized Ensemble Transform Kalman filter

Loop through model grid and update ‘local domains’
Utilize only observations within ‘influence radius’
around updated grid point

Local transform matrix with inflation
A™'= p(N,—1I+ (HL)"R'HL

update weight vector and matrix
W= A(AL)TR"! (y - ﬂxf>

W = /N, — 1AY2A

Nerger — Ensemble DA in Earth system

Localization is empirical
Optimal values for p and
influence radius are unknown
Some adaptive methods exist
(most without theretical basis)

aAWV/



Improving beyond Ensemble Kalman

20

Nonlinear filtering
= Particle filters
= replace ensemble transformation by weights and resampling
= Difficult due to degenerate weights
= Localization can help
= |terative filters
= |terative KFs (Bocquet et al.)

= Particle flow filter (Stein variational descent) (Pulido, van
Leeuwen, Hu)

= Hybrid particle-Kalman filters
= Combine linear (Gaussian) Kalman with particle filters
= Localized PF (Poterjoy)
= Local hybrid Kalman-nonlinear transform filter

Nerger — Ensemble DA in Earth system
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NETF (Todter & Ahrens, 2015)

= Nonlinear Ensemble Transform Filter

» Mean update from Particle Filter weights:
for Gaussian observation errors for all particles i

W' ~ exp (—O.5(y — HX{)TR_l(y — HX,{))
(nonlinear function of observations y)

» Ensemble update

= Transform ensemble to fulfill analysis covariance
(like ETKF, but not assuming Gaussianity)

= Derivation gives
. ~ ~ ~ 1/2
W = /N [diag(w) — ww | /2 A
(A: mean-preserving random matrix; useful for stability)

NETF is a second-order exact particle filter
21 Todter, J. and Ahrens, B. (2015) Mon. Wea. Rev. 143,1347-1367

Similar computational
efficiency as
ETKF/ESTKF

Localization analogous to
ETKF/ESTKF

Excellent parallelization
possibility when combined
with localization

Nonlinear filter:
= No assumption of
Gaussian distributions
= Nonlinearin'y

aAWV/



EKTF & NETF with Lorenz-63 model

22

L?renz-63:'CRPS o ETKF
: ——NETF
Dependence on ensemble size 1.4} +weak noniin
—+ medium nonlin
12} ——strong nonlin
= NETF yields smaller errors than ETKEF if
ensemble size large enough " 1t
- Size limit decreases for larger nonlinearity & 08
O 0.8r
= Improvement by NETF stronger for higher
nonlinearity 06T
‘\- P —m—
0.4} ¥"\+\ e
R .
A St o e v S SN
0.2 : : : :
20 40 60 80 100

Nerger — Ensemble DA in Earth system

ensemble size Ne

ETKF and NETF for
3 different nonlinearities

(weak At=0.1, medium At=0.4, strong At=0.7)

aAWV/



Test with Lorenz-96 model

RMSE: LETKF
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123456789 10 12 14 16
min=1.606 localization radius r| .
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RMSE: LNETF

1 2 3 4 5 6 7 8 9 10
min=1.754 localization radius r, -

Nerger — Ensemble DA in Earth system

2.6

2.4

2.2

1.8

1.6

1.4

State dimension 40
Ensemble size 15
Forecast: 8 time steps
20 observations

Show RMS errors as
function of inflation
(forgetting factor or
inflation theshold «) and
localization radius

LNETF worse than LETKF

aAWV/



Stabilizing LNETF — Lorenz-96 model

forgetting factor p
o o
© &

0.756

0.7

24

1
Mmin=1.806 localization radius r

RMSE: LNETF - standard

2 3 4 65 6 7

Inflation:

forgetting factor

loc
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RMSE: LNETF
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Inflation:
= forgetting factor (p=0.85)
=  Minimum effective sample size

1
Nefp = Z (w?)2 >

Nerger — Ensemble DA in Earth system

State dimension 40
Ensemble size 15
Forecast: 8 time steps
20 observations

Show RMS errors as
function of inflation
(forgetting factor or
inflation theshold «) and
localization radius

aAWV/



ETKF-NETF — Hybrid Filter Variants

25

Factorize the likelihood:  p(y|x) = p(y|x)"p(y|x)*
(‘tempering’)

* y: hybrid weight (between 0 and 1; 1 for fully ETKF)

2-step updates
Variant 1 (HNK): NETF followed by ETKF

Ynik = X% preX!, (1—7)R™]
Ynvk = Xbrxr Xanvg, "R

« Both steps computed with increased R according to y

Variant 2 (HKN): ETKF followed by NETF

Nerger, L. (2022) Q. J. R. Meteorol. Soc., 148, 620-640 doi:10.1002/qj.4221

Related methods:
Frei/Kuensch (2013)
Chustagulprom et al. (2016)
Robert et al. (2018)
Grooms/Robinson (2021)

aAWV/



Choosing hybrid weight y

= Hybrid weight shifts filter behavior Issue: Using N,y ¢

= only ensures
Some possibilities: non-collapsing ensemble
= Fixed value = does not ensure

good analysis result
= Experimentally no obvious
relation between N and y

= Adaptive - According to which condition?

= Frei & Kuensch (2013) suggested

: , , 1
using effective sample size N¢fr =

(w?)?
= Yo : Choose y so that N.y¢ is as small as possible but
above minimum limit a (done iteratively)

(Usual choice for 'tempering’)

= Adaptive alternative Ne ff
Yiin = 1 — Ne

(close to 1 if Ny small; no iterations)

i
Nerger — Ensemble DA in Earth system @ MI




Effect of hybrid weight y

= [ orenz-96 model, size 80

Absolute errors
T

= Examine single analysis step

1. Run 33 analysis steps with y=1 (LETKF)
2. Run analysis step 34 with one of

a) y=1
b) y=0.8

3. Examine N and analysis errors

T

T

forecast

Additional experiment:
c) Adjust y at each grid point to get

minimum error

No obvious relation
between Nt and y!

27 Nerger — Ensemble DA in Earth system




Account for non-Gaussianity: Skewness and Kurtosis

28

= Mean — 1st moment
= Variance — 2nd moment

= Skewness — 3rd moment N. N
Nie D im (XZ - X)

skew =
N 2132
[(Nel—l) 2 (X' —X) ]

=  Kurtosis — 4th moment 1 N, i —\4
N im (X —X)
kurt =

1 Ne 7) —22_3
[(Te) 2 i—1 (X —X) }

= Skewness and kurtosis
= generally not bounded
= but limits depend on ensemble size

Nerger — Ensemble DA in Earth system
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Asymptotic properties of skewness and kurtosis

= Bounds of skewness and kurtosis depend on ensemble size
= Assess extreme cases

Case Values
max.skew xM =a-d xD =3 i=2,...,N,
max.kurt xM=a-d x@D =a+d, xD =2 i=3...,N,

min. kurt xD =a—-d, i=1,...No/2; xY) =a+d, j=Ns/2+1,...,N,

in

a-d a a+d
29 Nerger — Ensemble DA in Earth system

skew limit

VNe

0

kurt limit

aAWV/



Using skewness and kurtosis to define hybrid weight y

30

=  Sampling errors are larger in NETF than ETKF
- Always use ETKF for Gaussian (linear) cases
=  Skewness and kurtosis describe deviation from Gaussianity

= mean absolute skewness (7.a.5) and kurtosis (11.ak ) of observed ensemble

(with localization: use locally assimilated observations)
= Use normalized means:

1 1
nmas = —1mas nmak = —mak

VK K

Now define
Vsk,oo = max [min(1 — nmak, 1 —nmas), ]

Vsk,lin = max [min(1 — nmak, 1 —nmas), Y]

standard value:

Kk = N,

stronger influence of
nmas and nmak

limited by Neff

Note: There are sampling errors, e.g. for skewness Oskew ™~
= For N=25: ~10% error in 7y

6/N,

Nerger — Ensemble DA in Earth system
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Assimilation with Lorenz-63 model

Lorenz-63 3-variable model (‘Butterfly’) ' Lorenz-63: CRPS ————
Hybrid filter HNK 1.4} ANk,
= particular strong effect for small N, 1ol * PF <o
. —+-weakK nonlin
= CRPS from NETF and HNK converge for —+ medium nonlin
|« o I
Iarge Ne g_) 1 strong noniin
= errors reduced up to 28% % 0.8}
Particle Filter
0.6}
- comparable CRPS for large N,
»  PF expected to be superior if N, 0.4 b
sufficiently large (the full nonlinear filter) 0 s S s T S
' 20 40 60 80 100

ensemble size Ne

Note: Easy to use large ensemble for Lorenz-63,
difficult for higher dimensional models

o
Nerger — Ensemble DA in Earth system @ MI



Lorenz-63, distribution of y for different cases

1 Cumulative distribution of y

<
™

©
o

cumulative probability
o
~

0.2

0
Filter: Wi Ya=0.4  Vskiin  Vskaa=01  Ya=08  Ysk.x=0.0
K - - 5 10 - 100

CRPS 0.673 0.707 0.671 0.639 0.826 0.873
RMSE 1.125 1.178 1.113 1.105 1.372 1.575

Results for N.=25, At=0.7

Low-CRPS cases obtained for
different distributions of y

= non-unique solution

= sometimes lowering y does not
change result at an analysis time

*
32 Nerger — Ensemble DA in Earth system @ NV/



Test with Lorenz-96 model

Ensemble size 15; Forecast length: 8 time steps; 20 observations

RMSE: LETKF RMSE: LNETF
2.6
] 0.5 . .
0.45 04 Strongly nonlinear DA setting
0.95 0.4
U 3
5 0.9 2035 2.2
E g 0.3 ,
goee Zoas « Show RMS errors as function
gos 5 02 18 of inflation (forgetting factor
075 - . or a) and localization radius
0.7 0.05 - i
123456789 10 12 14 16 1 2 3 4 5 6 7 8 9 10 s * Smal/eSt errors Hybrld HNK
min=1.606 localization radius r . min=1.754 localization radius r (1 0% error reduction)
hybrid HNK hybrid HKN
1 1 = hybrid filter able to utlize
065 065 non-Gaussian information
g 09 g 0o g « Other hybrid variants also
2045 2025 2 improve the state estimate
% 0.8 :%'J’ 0.8 ng’
0.75 0.75
0.7 0.7

*
123456 789 10 12 14 16 123456789 10 12 14 16 @
min=1.447 localization radius r min=1.599 localization radius r, .

loc



Lorenz-96, Hybrid HNK, dependence on k

Y, Lorenz-96: Vsk,a? _15 Lorenz-96: Tska? _40

08 1 CRPS
0.98 o relative to
s 0.95 LETKF
0.96 '
0.5
0.9
0.94 304
0.3
0.2
0.9 0.1
0.8
0
0.88

7skl|n
1510 20 30 40 50 60 70 80 90 100 1510 20 30 40 50 60 70 80 90 100
K K

0.8

0.7

0.6

0.5

304

0.3

0.2

0.1

0

'Ysk,lm

k can be chosen dependent on ensemble size
= Limits of skewness and kurtosis depend on N,

= but actual skewness and kurtosis do not depend on system, not on N,
= Standard value =N,, but smaller large large N,

Nerger — Ensemble DA in Earth system @ Ml



Application example PDAF e

Framework

= (Qcean-biogeochemical model: Chiorophyll: CMEMS NEMO-ERGOM
= NEMO + ERGOM oo gﬂ\\‘\w ] B

112

= Configuration: NORDIC 2.0

= 1.8km resolution, 56 layers, 90s time step oo Rl I°E
= North Sea & Baltic Sea - 3
= Qperational use in CMEMS for the Baltic Sea -

= DA implementation . - |
= augment NEMO-ERGOM with DA functionality by PDAF RS Wi S
(online-coupling in memory)

= State vector:

0

= physics + biogeochemistry ocean.and biogeo_chemical
State vector size ~153 million dynamics are nonlinear and
= Assimilate satellite chlorophyll data distributions non-Gaussian

This project has received funding from the European Union’s Horizon 2020 @ Ml

35 research and innovation programme under grant agreement No 776480




Effect of hybrid filter in high-dimensional application

36

Assimilation using rule Vsk,«

RMS deviation for log-Chlorophyll

0.7 1

0.6 1

log RMSe

0.3 1

0.2 A

0.1

0.4

— Free
— |LETKF
-=-= LKNETF

Jan.

March ' April ' May

Nerger — Ensemble DA in Earth system

Regional model setup

Only assimilate chlorophyll
observations

Stronger assimilation effect
of LKNETF

We still don’t know optimal
choice of rule for y

aAWV/



Potential further steps

37

Particularities

= High-dimensional systems with relations governed by physics
= Very sparsely observed

Potential for improvements

Reduce execution time Surrogates might help, but

= Dominated by model! = Costly to build

: = Unclear if sufficiently representative
Faster DA method of little help (need current representation of error)

Reduce time to tune method

-trai ?
= Tuning required and costly Do pre-trained neural networks help”

Improve estimates

= Avoid assumptions on distributions (or avoid distributions)
= Avoid sampling errors

= Ensure small state changes to avoid disturbing ‘balances’

Nerger — Ensemble DA in Earth system
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PDAFParaIIeI

Data Assimilation

Summary
Framework

= High-dimensional application in geosciences
= Costly to compute & large amount of outputs
= Incompletely observed and with significant errors

= Current standard method basing on optimization or estimation

= suffer from sampling errors and costly tuning

= hybrid nonlinear-Kalman ensemble transform filter
= Combine LETKF and LNETF methods
= hybrid weight y shifts filter behavior using skewness & kurtosis (but no theory)

= Cost of analysis step ~2x LETKF

i
38 Lars.Nerger@awi.de Nerger — Ensemble DA in Earth system @ AN/



Summary

Introduced hybrid nonlinear-Kalman ensemble transform filter
= Combine LETKF and LNETF methods
= hybrid weight y shifts filter behavior
= Cost of analysis step ~2x LETKF

Experiments with Lorenz models

= Hybrid filter successfully reduces errors compared to LETKF and LNETF
= Best results for variant HNK: LNETF applied before LETKF
= Can compute y from skewness and kurtosis
= allows to control nonlinearity of filter based on non-Gaussianity
= Improved stability & reduced errors compared to tempering rule on N4

¢ Nerger, Q. J. Meteorol. Soc., 148 (2022) 620-640, doi:10.1002/qj.4221

PDAFParaIIeI

Data Assimilation
Framework




