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Overview

Data assimilation
= Assimilation software
Application cases:
= Coupled ocean-atmosphere assimilation

= Estimation of biogeochemical process
parameters

Lars Nerger — Coupled modeling and data assimilation @ NV,



Data Assimilation — Combining Models and Observations

Models Observations

Combine both sources of information

quantitatively and optimally by computer algorithm

= Data Assimilation

Lars Nerger — Coupled modeling and data assimilation @ AN/




Coupled Assimilation - Ocean-Centric Perspective

Snow and ice
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Other components
* Atmospheric chemistry
» Evaporation

* Outgoing heat

Focus on ocean modeling
+ interacting components

’ Source: NCAR
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Data Assimilation - Possibilities

“Observation-constrained (ensemble) modeling”
Aims

1. Optimal estimation of some modelled system:

« initial conditions (for weather/ocean forecasts, ...)
- state trajectory (temperature, concentrations, ...)
« parameters (ice strength, plankton growth, ...)
* fluxes (heat, primary production, ...)

- boundary conditions and ‘forcing’ (wind stress, ...)

2. More advanced: Improvement of model formulation and observations
 detect systematic errors (bias)
* revise parameterizations based on parameter estimates

 detect relevant observations for observation system design

Lars Nerger — Coupled modeling and data assimilation @ NVI



Ensemble Data Assimilation

Ensemble Kalman filters (Evensen (1994), see Vetra-Carvalho et al. (2018)...

Particle filters (see van Leeuwen et al. (2019), ...)

forecast

ensemble
for

[ initial

sampl ="
smoothing ‘ ]
state O
estimate
observation
time O time 1 time 2
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Much research
into how to
perform these
operations

Most can be
implemented in
generic form

Available in our
DA software
PDAF

#

QI



PDAFParaIIeI

PDAF - Parallel Data Assimilation Framework Data Assimilation

Framework

A unified tool for interdisciplinary data assimilation ...

Focus on
o ==RVAnlEInEhiEliI Code, documentation, and tutorial available at

* Performance for https://pdaf.awi.de
complex models

" Flexibility to extend github.com/PDAF/PDAF
system

7

provide support for parallel ensemble forecasts

provide DA methods (EnKFs, smoothers, PFs, 3D-Var) - fully-implemented & parallelized
provide tools for observation handling and for diagnostics

easy implementation with (probably) any numerical model (<1 month)

a program library (PDAF-core) plus additional functions & templates

run from notebooks to supercomputers (Fortran, MPI & OpenMP)

ensure separation of concerns (model — DA method — observations — covariances)

first release in year 2004; continuous further development

Open source:

L. Nerger, W. Hiller, Computers & Geosciences 55 (2013) 110-118



Online-Coupling — Assimilation-enabled Model

PDAFParaIIeI

Data Assimilation
Framework

Couple a model with PDAF

Modify model to simulate
ensemble of model states

Insert analysis step/solver to be
executed at prescribed interval

Run model as usual, but with
more processors and additional
options

EnOl and 3D-Var also possible:
= Evolve single model state

= Prescribe ensemble
perturbations or covariance

Single program

Forecast 1

# Observation

Forecast 2

PDAF Analysis

(filter or
solver)

Update fields
for next

forecast

Initialize Ensemble
ensemble forecast

Analysis step in
between time steps

aAWV/



PDAF Application Examples — at AWI

PDAFParaIIeI

Data Assimilation
Framework

Coastal coupled S o S e e e Paleo-climate
physics/biogeoche- " ‘ DA: improve
mistry DA: simulation of last
CMEMS/BSH = 60°N |7

deglaciation with
CLIMBER-X
(A. Masoum)

Improving forecasts
with NEMO-ERGOM/ _.

HBM-ERGOM: e

(S. Vliegen, A. "

Sathanarayanan) & Different models — same
assimilation software

Coupled leverage synergies

physics/biogeo- 5

chemistry DA:
Improving parameters
& carbon flux in

Assimilate ocean
observations into
atmosphere with

REcoM AWI-CM
(N. Mamnun, F. D R (Q. Tang)
Bunsen’ A BrOSChke) mmol C day~! m~2

Mean sea surface change over proxy locations

AMST [°C]

LGM oD BA __YD__ Early Holocene

=22 =20 -18 -16 -14 =12 -10 -8 -6
Time [ka Years]

I-CM: ECHAMG6-FESOM coupled model
e o

Resolution [km]
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PDAF Application Examples - External gt? I@sﬁ?laartailclaer:

Framework

10

External applications & users, like

Operational uses:

Beyond ocean

Germany: North/Baltic Seas (HBM model) TSMP (Terrestrial Systems Modeling Platform)
] . . : =  WREF (Weather forecast and research model)
Europe: Copernicus marine forecasting center _
: = TIE-GCM (Thermosphere lonosphere Electrodynamics GCM)
Baltic Sea (NEMO)
China: Arctic ice-ocean prediction system " WRF (Wether Research and Forecast Model)
(MITgem) P y =  VILMA (Viscoelastic Lithosphere and Mantle Model)

= Parody (Geodynamo model)
= HYSPLIT (Volcanic Ash Transport and Dispersion model)

Ocean, biogeochemistry & climate models = HydroGeosphere (hydrology)
(research applications) = Cardiatic modeling (blood flow)
= SCHISM/ESMF = ...Mmore

CICE (seaice)

MEDUSA (biogeochemistry) .
MPI-ESM (ICON-O) Different models — same

COAWST (WRF-ROMS-CICE) assimilation software

NEMO
... more synergies a AN/

MITgcm

Lars



pyPDAF PDAF e

Framework

1

Python interface to PDAF -

o . , . User coded
allows to qode all application-specific functionality in Python Python _ Driver and call-
(not touching Fortran!) DA system back functions
assimilation analysis computed inside PDAF I _

(excellent performance due to compiled Fortran code)

supports all functionality of PDAF including MPI-parallelization Pre-compiled
= online coupling (e.g. for Python-coded models) — in Conda —
= offline coupling (using files from model runs) ready to use

demonstrated low overhead for localized ensemble filters gereran)

installation using Conda

github.com/yumench/pyPDAF
“

Y. Chen et al. (2024). Geoscientific Model Development, submitted @ Ml




Application |

Coupled atmosphere-ocean data assimilation

ssESM

-- . . Advanced . <3
Earth System Modellin
“" Capacity d g @ Ml
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Assimilation into coupled model: AWI-CM1 Z2ESM

A ed
-“ ;,. ICE?D?SWSystem Modelling

Atmosphere
g =
g . %\\‘\‘;"% 150
OASIS3-MCT A (0% \| B
fluxes | @& “ E
B Fiminasaity > x:{% moé
i < ' 2
e oceanlice state il
Alternative: Atmosphere Coupler library Ocean
OpenlIFS = ECHAMG6 OASIS3-MCT = FESOM
(AWI-CM3) = JSBACH land = includes seaice

Two separate programs for atmosphere and ocean
Goal: Develop data assimilation methodology for

cross-component assimilation (“strongly-coupled”)
“assimilate ocean observations into the atmosphere”

13 Nerger et al. (2020). Geoscientific Model Development, 13, 4305-4321, doi:10.5194/gmd-13-4305-2020 @ AN I



https://doi.org/10.5194/gmd-13-4305-2020

«sESM

Coupled Models and Coupled Data Assimilation [ L EEr—"
Atmosphere Ocean

Coupled models
= Several interconnected components, like

Resolution [km]

= Atmosphere and ocean

= Qcean physics and biogeochemistry
(carbon, plankton, etc.)

= Atmosphere and land surface

Coupled data assimilation

= Assimilation into coupled models

= Weakly coupled: separate assimilation in the components

—~ Challenges:

= Strongly coupled: joint assimilation of the components L ,
gy P J P * Distinct spatial and
= Use cross-covariances between fields in components —  temporal scales
* nonlinearity

= Expected to ensure consistent state across components —

QI
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. : “aESM
Data Assimilation Experiments Wy o

“ ', Earth System Modelling

Capacity

ECHAM mesh

Model setup

= Global model

= ECHAM®G6: T63L47 , ~1.8° horizontal resolution
= FESOM: resolution 30-160km

Data assimilation experiments
= QObservations: satellite sea surface temperature

= Simulation period: year 2016, daily assimilation update
= Updated variables: =

o S
\\»,i".

= weakly-coupled: ocean ‘,;\\\;
I ‘» N
= strongly-coupled: ocean + atmosphere gﬁ-‘.
= ensemble filter LESTKF (Nerger et al., 2012) in PDAF
= Ensemble size: 46
= Computing time: 3.5h
= fully parallelized using ~13,000 processor cores

Lars Nerger — Coupled modeling and data assimilation @ MII
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«sESM

Assimilate sea surface temperature (SST) R —y—

Satellite SST on January 1, 2016 = Satellite sea surface temperature
SR LTS, (multi-satellite, level 3, EU Copernicus)

= Daily data, data gaps due to clouds
= QObservation error: 0.8 °C

= Localization radius: 1000 km

=> no atmospheric data assimilated (by intention)

8 12 16 20 24 28 32
Temperature (°C)

SST difference: observations-model

Large initial SST deviation due to
using a coupled model: up to 10°C

Assimilation with such a coupled model is unstable!

r

= omit SST observations where
) S . | SSTops~ SSTens_ mean| > 1.6 °C

-5 -4 -3 =2 —.l 0 1 2 3 4
Temperature (°C) (30% initially, <5% later)
3
Tang et al. (2020) Q. J. Royal Metorol. Soc., 146, 4014-4029, doi:10.1002/qj.3885 @ Ml
16 Tang, et al., (2021) Geophys. Res. Lett, 48, €2021GL094941,



Assimilation of satellite SST: Effect on the ocean v

“ ', Earth System Modelling

SST difference (obs-model): strong decrease of deviation

No A55|m|Iat|on 4/30/2016 A55|m|Iat|on
e o =y Day 120 Zemd mimts Necessary
e (April 30) effect:
dependent
data

Subsurface temperature difference (obs-model); all model layers at profile locations

4/30/2016
Day 120
(April 30)

No A55|m|Iat|on A55|m|Iat|on

independent
data

QI

-1 0 1
Temperature, °C
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/|
Weakly coupled DA: Effect on the Atmosphere ==.E-SM

Earth System Modellin
“ " Capacity ¥ 9

18

Difference between assimilation run and the free run
Weakly coupled: DA only changes ocean variables

Temperature at 2m Sea surface temperature

Atmosphere reacts quickly on the changed ocean state

Does it make the atmosphere more realistic?

Lars Nerger — Coupled modeling and data assimilation @ MII



a4
Effect on Atmospheric State ==.E..SM

“ " Earth System Modelling

Capacity

Difference Model — ERA-Interim Reanalysis (mean over 2016)

2-meter
temperature

Tang et al., 2020, 2021

No Assimilation

- -
e o R e
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4
Weakly-coupled DA — Change in precipitation ==F-SM

Earth System Modellin
“ " Capacity ¥ 9

Free run-ERA

-

DA all-Free run

-

-0.0002 0 0.0002
kg/m**2s

= Data assimilation removes most of the precipitation bias

Tang et al. (2020) Q. J. Royal Metorol. Soc., 146, 4014-4029, doi:10.1002/qj.3885 @ m,
20 Tang, et al., (2021) Geophys. Res. Lett, 48, €2021GL094941,



Average assimilation increments

21

Average increments (analysis — forecast) for days 61-366 (after spinup)
= non-zero values indicate regions with possible biases
= Equatorial region likely due to resolution

Temperature Temperature at
at sea surface

R = < -
> :*.'_;i‘} ‘ 7= & >
5 X/ e Ry
i S
S -

-0.20 -0.16 -0.12 -0.08 -0.04 0.00 0.04 0.08 0.12 0.16

Temperature, °C

Lars Nerger — Coupled modeling and data assimilation
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ssESM

Strongly vs. weakly coupled DA LT 7= —
Difference Model — ERA-Interim Reanalysis (mean over 2016) Very similar
2-meter effects at the

Wea kIy-coupIed DA

Strongly-coupled DA
"7

temperature interface

Strongly-coupled DA 10 meter zonal Weakly-coupled DA |_1
- -~ wind velocity i ST

Temperature (°C) / Velocity (m/s)

N ORR u“‘..-v//h 3
5

..-......-.-ndu




Strongly-coupled assimilation of SST observations

23

Assimilate sea surface temperature into the atmosphere

2 cases:

SCDA: update all atmospheric layers

=> cross-covariances with SST used throughout the atmosphere

SCDA_vloc: apply vertical localization to assimilation increments
= Full increments in lower atmosphere (sea surface — 800 hPa)
= Linear decrease to zero from 800 — 600 hPa
= No update higher than 600 hPa

=> No direct effect on assimilation in boundary layer

=> Dynamics in free atmophere influence lower atmosphere

Tang et al. (2021) GRL, 48, e2021GL094941

pressure (hPa)

300

400

500

600

700

800

900

1000 -

0 0.5 1
increment factor

Factor for vertical

localization

aAWV/



Strongly vs. weakly coupled DA

24

Atmospheric temperature — zonally averaged root-mean square errors compared to ERA-Interim

DA on full atmosphere DA vertically localized
RMSE(SCDA) - RMSE(WCDA) RMSE(SCDA vloc) - RMSE(WCDA)
300 300
S 400 A 400 A
< 500 A 500 A
U 600 A 600 -
2 700 - 700
o 800 800 -
S 9004, . 900
1000 — T T T = 1000 r r r
-50 0 50 -50 0 50
latitude latitude

= SCDA in full atmosphere

1.00
0.75
0.50
0.25
0.00

—0.25
—0.50

SCDA
¥ worse

’

()
—
)
]
(©
—

Q

S

P

—9-759 scpA

better

= deteriorates temperature in tropical region (due to too strong vertical correlations)

= Improves high latitude regions (also in wind speed and specific humidity)
= Vertical localization (SCDA_vloc)

= removes deterioration in tropical region

= keeps (some) positive effect in high latitude regions

QI



Weakly vs. Strongly coupled DA

Wind speed — zonally averaged rms error

(g) RMSE( SCDA -RMSE(WCDA) (h) RMSE(SCDA vert)-RMSE(WCDA)
300 ]—| 1.5 300 1.5

< 500 1 0.5 < 500 1 0.5
g 600 - 00 & ¢ 6001 00 2
3 700 - “o5 E 3 700- “o5 E
O 800 . o 800 A :
& 900 - —-1.0 & 900 A, —-1.0

1000 . . l —1.5 1000 . l ; -1.5

-50 0 50 -50 0 50
lat lat
Specific humidity (normalized by ERA-Interim — zonally averaged rms error
(k) RMSE(SCDA)-RMSE(WCDA) (I) RMSE(SCDA vert)-RMSE(WCDA)
300 0.20 300 0.20

S 400 - 0.15 & 400 0.15
3 H g S e o
U 600 - “ : U 600 - :
> 7004 " 98%5 2 700 - 98%5
¢ 800, —0.10 & 8009 ~0.10
S 900 -0.15 s 900 ! —0.15

1000 =—— . . —0.20 1000 Ay . . —0.20

—50 0 50 —50 0 50

lat lat @ NV,



Weakly and strongly-coupled assimilation of SST observations

= Improvement of atmospheric state

= Fast reaction of atmosphere

= Strongly-coupled assimilation compared to weakly coupled
= Slightly increased errors in tropical region
= Improvements in higher latitudes
= Utilizing vertical localization

= Qverall smaller effects, but still positive in high latitudes

26 Tangetal. (2021) GRL, 48, €2021GL094941 @ IW,



Application Il

Estimating biogeochemical process parameters

Lars Nerger — Coupled modeling and data assimilation @ MII



REcoM2 coupled to MiTgcm

Ecosystem: REcoM Physics: MiTgcm

(b) LLC90 Grid Resolution 110

2 . 100

_ - 2 2 »" 920

1((&0“" COU pllng : o oo = 80
_ uiren 1] N, C, Chl, Calcite — - 5 ) e 70 ¢
DIN, DIC, Si, Fe biatoms U] ne Bl S g 60 O

S aus . velocities U 50

temperature 40

30
20

Forget et al. (2015)

= Biogeochemical process parameters:
= 65 process parameters
= constant over the globe
= most values have significant uncertainties

28 Lars Nerger — Coupled modeling and data assimilation @ ANI



Coupled Data Assimilation

29

Ensemble states
= 8 REcoM state variables describing phytoplankton
= O sensitive process parameters

= Defined as 2 dimensional fields

Chlorophyll observations

Assimilation setup average for September
= satellite observations: - '

= 5-day chlorophyll concentration from ESA OCCCI
= simulation period: year 2020
= ensemble Kalman filter LESTKF in PDAF
= ensemble size: 40

-5.0 -3.0 -1.0 1.0
= estimate 2-dimensional parameter fields (e =)

= assimilation applied to log-transformed variables and parameters
= at initial time:
= stochastic perturbation of process parameters for ensemble spread

Lars Nerger — Coupled modeling and data assimilation @ AN,



Estimated parameter: initial slope of photosynthesis curve (a)

a: Efficiency at which phytoplankton converts light energy into chemical energy

Small phytoplankton Diatoms

i

&3 =
<EZ i B

i T i

0 " 023 0.6 0.9 1.2 0 '03 0.6 0.9 1.2
0.16 0.19
default value == default value

mmolC(mgChl)~Y(Wm~2d)~1 mmolC(mgChl)~Y(Wm~2d)~1

Estimation of spatially varying process parameter

= Different distributions for both plankton groups

= Significant deviations from constant default values

= Generally consistent with observations (where they exist)

30  Mamnun et al. (2025) J. Geophys. Res., submitted, preprint: doi:10.22541/essoar.174594990.07411710/v1 @ Ml



Estimated parameter: initial slope of photosynthesis curve (a)

31

a: Efficiency at which phytoplankton converts light energy into chemical energy

Small phytoplankton

Regional parameter value . .
= Estimates develop over time

over time
Qnano = Values typically converge

TARCT TTTNASEL T WIRAL oo SANT = But not always: variation over time

--- SARC  --- NASW —— SATL —-— ANTA )

""" NADR == NATR  —— SSTC  —— Default possible relevant for some parameters
0.30 _
0.25
0.20;
0.15
0.10
0.05 ~ — -~

=g E2E2I2ZF3E4
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Model run with estimated parameters

0.6

Standard Deviation

Standard Deviation

. .. (A) Global: 2019 Parameters: . Comparlg.on with satellite chlorophyill
. A + default observations
5% :
o, @ estimated = Over 5 years (2017 — 2021)
ol SN = 26% reduction of RMSE for annual average
0 e Noss Default optimized Observations
................. parameters parameters
; “0.99
X H ; | 1
0.0 0.2 0.4 0.6
B (B) NH: April 2019

+ Default
® Estimat

I
=}
T

\
_______

i 4 0.01 0.1 1 10 0.01 0.1 1 10 0.01 0.1 1 10 v,
Q. ; .' 15 Lars Nerg mgm ™3 mgm~3 mgm~3



Summary

33

Ensemble Data Assimilation

allows for ‘observation-constrained’ modeling
and to let the model learn from observations

rather easy to implement and to apply

Coupled data assimilation

Joint update beyond single Earth system components

Can improve overall consistency, but depends on time scales

Data assimilation is not just for forecasting!

Useful applications in understanding model deficits and
improving the models

Thank you!

Lars.Nerger@awi.de — Coupled modeling and data assimilation
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Data Assimilation
Framework
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