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 A B S T R A C T

With tree mortality rates rising across many regions of the world, efficient methods to map dead trees are 
becoming increasingly important to monitor forest dieback, assess ecological impacts, and guide management 
strategies. Deep learning-based pattern recognition combined with the high spatial detail of aerial images from 
drones or airplanes provides an avenue for mapping dead tree crowns or partial canopy dieback, collectively 
referred to as standing deadwood. However, current methods for mapping standing deadwood are limited to 
specific biomes or image resolutions. Here, we present a transformer-based semantic segmentation model that 
generalizes across forest biomes and a wide range of image resolutions (1–28 cm) for mapping both dead tree 
crowns and partial canopy dieback. Our approach combines a SegFormer-based transformer architecture for 
image feature extraction and Focal Tversky Loss to mitigate class imbalance. We used a globally distributed 
crowd-sourced dataset of 434 high-resolution aerial images and manual delineations of standing deadwood of 
vastly varying quality. The orthophotos span all major forest biomes and cover 10,778 hectares. To further 
mitigate imbalances across biomes, resolutions, deadwood occurrence, and image sources, we developed a four-
dimensional sampling scheme that ensures balanced representation during training. The models were trained 
and evaluated using heterogeneous crowd-sourced data, which, as expected, negatively affects the F1-scores. 

∗ Corresponding author.
E-mail address: clemens.mosig@uni-leipzig.de (C. Mosig).
https://doi.org/10.1016/j.ophoto.2025.100104
Received 12 May 2025; Received in revised form 7 October 2025; Accepted 8 October 2025
vailable online 21 October 2025 
667-3932/© 2025 The Authors. Published by Elsevier B.V. on behalf of International Society of Photogrammetry and Remote Sensing. This is an open access article 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-sensing
https://www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-sensing
https://www.journals.elsevier.com/isprs-open-journal-of-photogrammetry-and-remote-sensing
https://orcid.org/0009-0006-5705-7464
https://orcid.org/0000-0001-7381-3828
https://orcid.org/0000-0003-3031-613X
https://orcid.org/0000-0001-8658-4673
https://orcid.org/0000-0002-3592-8170
https://orcid.org/0009-0001-6053-8094
https://orcid.org/0000-0001-5723-8114
https://orcid.org/0000-0001-7895-702X
https://orcid.org/0009-0006-8293-9792
https://orcid.org/0000-0001-9844-0896
https://orcid.org/0000-0001-6716-1333
https://orcid.org/0000-0002-0751-6312
https://orcid.org/0000-0001-8276-9259
https://orcid.org/0000-0003-4689-2027
https://orcid.org/0000-0003-1107-1958
https://orcid.org/0000-0002-3167-2622
https://orcid.org/0000-0003-1032-9806
https://orcid.org/0009-0000-0336-5898
https://orcid.org/0000-0002-3138-3177
https://orcid.org/0000-0003-0919-7279
https://orcid.org/0000-0002-2258-2246
https://orcid.org/0000-0002-3338-3402
https://orcid.org/0009-0008-9195-5633
https://orcid.org/0000-0002-6794-0086
https://orcid.org/0009-0003-8662-7698
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
https://deadtrees.earth/
mailto:clemens.mosig@uni-leipzig.de
https://doi.org/10.1016/j.ophoto.2025.100104
https://doi.org/10.1016/j.ophoto.2025.100104
http://creativecommons.org/licenses/by/4.0/


J. Möhring et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 18 (2025) 100104 

 

A visual inspection on independent data highlights the very precise quality of the segmentation. Our analysis 
revealed resolution-dependent performance variations across biomes, suggesting a relationship between optimal 
mapping resolution and biome-specific characteristics. We make both our model and a machine-learning-ready 
dataset publicly available on deadtrees.earth to support future research in tree mortality mapping.
1. Introduction

In recent years, elevated tree mortality has been observed in many 
regions of the world (Hartmann et al., 2022; Trumbore et al., 2015; 
Allen et al., 2015). Our ability to understand and quantify tree mor-
tality dynamics remains limited, as there is a lack of comprehensive, 
globally applicable data and assessment methods. Developing effective 
methods for assessing tree mortality across forest types and biomes 
is crucial for a consistent monitoring and informing forest manage-
ment strategies from regional to global scales (The International Tree 
Mortality Network et al., 2025).

Remote sensing has proven highly effective for mapping standing 
deadwood canopies at local to regional scales. In particular, aerial 
imagery, when combined with deep-learning-based segmentation algo-
rithms, provides a powerful means to map dead crowns (Kattenborn 
et al., 2021; Schiefer et al., 2023; Cheng et al., 2024; Khatri-Chhetri 
et al., 2024). Such pattern recognition algorithms can detect charac-
teristic spatial features of dead tree crowns to locate or segment dead 
tree crowns. For example, Cheng et al. (2024) applied instance seg-
mentation to RGB-NIR airplane imagery across California and achieved 
individual dead tree detection accuracies of 80%–90%. In the same 
region, Khatri-Chhetri et al. (2024) showed for a semantic segmentation 
of tree crowns very high-resolution RGB imagery (0.1 m) yielded supe-
rior performance (𝐹1 = 0.76) compared to 1 m hyperspectral imagery 
(𝐹1 = 0.69) or 0.6 m RGBNIR imagery (𝐹1 = 0.61). At even finer 
resolutions (2–4 cm), Schiefer et al. (2020, 2023) demonstrated that 
drone-based orthophotos, together with semantic segmentation, enable 
robust mapping of dead canopies (𝐹1 = 0.75, 0.85) ranging from entire 
crowns down to individual branches.

The demonstrated effectiveness of RGB aerial imagery for mapping 
standing deadwood builds on two key properties. First, dead crowns 
and leafless branches lack green foliage and therefore appear in distinc-
tive gray–brown tones that contrast sharply with the green canopies 
of living trees (Schiefer et al., 2023). Second, RGB imagery provides 
the highest spatial detail compared to other spectral regions, because 
the sun emits most of its energy in the visible domain, enabling high 
signal-to-noise ratios, shorter exposure times, and ultimately sharper 
images (Khatri-Chhetri et al., 2024; Kattenborn et al., 2021). While 
RGB airplane imagery is very effective for large scale assessments, 
drone orthophotos with centimeter-scale resolution are particularly 
promising, as their fine spatial detail enables capturing entire dead tree 
crowns but also early and partial canopy dieback (Mosig et al., 2024; 
Schiefer et al., 2023).

Despite these growing capabilities, current approaches for harness-
ing RGB imagery remain fragmented. Most studies are restricted to 
either drone or airplane imagery, to specific spatial resolutions, or to 
particular forest types and regions. As a result, existing models are 
highly specialized and often lack transferability beyond their origi-
nal training context (Khatri-Chhetri et al., 2024; Cheng et al., 2024; 
Schiefer et al., 2023; Junttila et al., 2024; Schwarz et al., 2024; Allen 
et al., 2024). Yet, to advance operational and consistent monitoring 
of forest mortality we require transferable computer vision models 
that can seamlessly integrate imagery from both drones and airplanes, 
generalize across biomes, and capture the full spectrum of canopy 
decline, from early-stage partial dieback to fully dead tree crowns (The 
International Tree Mortality Network et al., 2025).

Several factors complicate the training of a generalizable computer 
vision model for detecting standing deadwood in aerial images. One 
major challenge lies in the high variability of visual tree characteristics, 
2 
such as leaf morphology, branching architecture, and crown geometry, 
which differ substantially across biomes and species (Mosig et al., 
2024; Jucker et al., 2024). This variability is particularly pronounced in 
forest types dominated by broadleaved species, which typically exhibit 
more complex crown structures and multilayered canopies compared to 
coniferous forests (Zielewska-Büttner et al., 2020). As a result, detecting 
tree mortality is especially difficult in tropical, dryland, and deciduous 
temperate forest ecosystems (Schiefer et al., 2023; Cheng et al., 2024). 
Additionally, open-canopy forests — such as those in dryland, boreal, or 
montane regions — pose further challenges. In these systems, visually 
similar features like bare soil, dead understory vegetation, or coarse 
woody debris may be confused with standing dead trees, complicating 
accurate detection.

Another challenge lies in the nature of the aerial imagery. Sensor 
characteristics — such as focal length, shutter type, and resolution 
— as well as operational conditions like flight speed and wind, can 
impact the visual appearance of tree canopies and the performance of 
image-matching techniques (Frey et al., 2018; Denter et al., 2022), and 
computer vision models (Kattenborn et al., 2021). Aerial imagery can 
range in resolutions from less than 1 cm, in drone flights, to 30 cm 
or even 60 cm in airplane imagery (see https://github.com/YanCheng-
go/open-aerial-photos). To manage this variability, aerial images are 
commonly resampled to a unified resolution (Schiefer et al., 2023). 
However, this process can discard potentially valuable information rele-
vant to tree mortality detection. Also, image processing — particularly 
the ortho-rectification process, which aligns and projects overlapping 
top-down images into an orthophoto — can introduce minor distortions 
in the resulting orthophotos. Lastly, the illumination conditions during 
the data acquisitions, such as cloud cover, atmospheric composition, 
and related scattering properties can introduce a substantial variability 
in the appearance of plant canopies, which can affect the transferability 
of pattern recognition models (Kattenborn et al., 2022). These factors 
collectively present significant challenges in training and applying 
generic segmentation models to identify standing deadwood in aerial 
images.

Training a robust segmentation model for standing deadwood re-
quires a comprehensive dataset covering the above-described variations 
in image and vegetation properties. Fortunately, the availability of 
orthophotos is rapidly expanding, and there is a growing momentum 
among researchers and institutions to openly share these data (Mosig 
et al., 2024). The largest, crowd-sourced orthophoto repository for 
the forest domain is the deadtrees.earth initiative, which hosts over 
3000 individual datasets contributed by more than 300 collaborators 
from over 100 institutions. This extensive collective dataset consists of 
aerial images from drones and airplanes across all biomes and major 
forest types, where standing deadwood delineations were provided 
for a subset of orthophotos. Here, we leverage this crowd-sourced 
dataset using a tailored data sampling and image rescaling approach 
to train a generalizable semantic segmentation model based on a vi-
sion transformer architecture. This model is designed to map standing 
deadwood across different image resolutions from 1 to 28 cm and 
all major biomes. We demonstrate its ability to identify deadwood 
features ranging from partial canopy dieback to fully dead tree crowns. 
Moreover, by testing the model with independent orthophotos across 
all biomes, we demonstrate that the model generalizes across different 
biomes, forest types, and image characteristics. Beyond developing a 
generalizing semantic segmentation model, a key contribution of this 
study is a publicly available, machine-learning-ready tiled dataset for 
multi-scale cross-biome mapping of tree mortality. This dataset and the 
trained model provide the first benchmark opportunities and baseline 
for evaluating globally transferable segmentation models for deadwood 
detection.

https://www.deadtrees.earth
https://github.com/YanCheng-go/open-aerial-photos
https://github.com/YanCheng-go/open-aerial-photos
https://github.com/YanCheng-go/open-aerial-photos


J. Möhring et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 18 (2025) 100104 
Fig. 1. Locations of manually labeled orthophotos. Background colors denote aggregated biome groups based on Olson et al. (2001). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
2. Dataset

For this study, we extracted all orthophotos with manual labels from 
deadtrees.earth, distributed across all major forested biomes (Mosig 
et al., 2024). The deadtrees.earth database provides high-resolution 
aerial images collected from drones and airplanes, where a subset in-
cludes manual segmentation labels. We only selected a subset of images 
with resolutions finer than or equal to 28 cm, as a prior analysis did 
not indicate promising results beyond this image resolution. Addition-
ally, we extracted the labels from deadtrees.earth, which are manual 
delineations of dead tree crowns or partial canopy dieback (leafless 
branches) based on visual interpretation. Given the crowd-sourced 
nature of these labels from various researchers, deadtrees.earth cate-
gorized the labels into three groups by quality, that is, low, medium, 
and high (Mosig et al., 2024). We only used those with medium or high 
quality. High-quality labels precisely delineate the shape of dead trees 
as detailed polygons, capturing fine features such as dead branches. 
Medium-quality labels provide only approximations, typically as simple 
circles, and may not capture partial dieback. Labels that are highly 
inaccurate and unsuitable for effective model training are considered 
low-quality. Including these medium-quality datasets was necessary to 
ensure coverage across all ecosystems, but it is important to consider 
during the later model performance assessment, as the limited precision 
of the labels may lead to lower evaluation scores even when the model 
performs accurately or better than the labels themselves. Lastly, each 
set of orthophotos and labels includes a polygon defining the area of 
interest. This is the region within the orthophoto where all visible 
dead trees, and in some cases partial dieback, were labeled as standing 
deadwood. Areas outside the area of interest are  excluded from model 
training and evaluation.

The final dataset selected for model training and performance as-
sessment consists of 434 sets of orthophotos and labels, covering a 
total labeled area of 10,778 hectares across all forested biomes. We 
assigned each image to a biome using the intersection of the orthophoto 
centroid with the biome boundaries defined by Olson et al. (2001). 
All original biomes by Olson et al. (2001) were then aggregated into 
coarser biome groups for simplicity (see Appendix  A.1). The resulting 
four biome groups were (1) (sub) tropical, (2) boreal and montane, (3) 
drylands (including Mediterranean), and (4) temperate forests (see Fig. 
1). Given its broad coverage, the deadtrees.earth dataset encompasses 
substantial variation in biome-specific characteristics. Different biomes 
inherit diverse visual characteristics across the datasets regarding tree 
species diversity, understory vegetation, and forest floor properties.

For example, orthophotos from dense temperate broadleaf and 
mixed forests can provide a clear visual distinction of dead and alive 
canopies, as standing deadwood is easily distinguishable against the 
darker canopy of intact trees (Fig.  2, top). In contrast, in open forests or 
3 
Table 1
Dataset distribution across biomes. Resolution is computed per orthophoto 
and then averaged per biome group. Label quality is a categorical value of 
1 (low quality, not present), 2 (medium quality), or 3 (high quality), reported 
per orthophoto (Mosig et al., 2024) and averaged by biome. std. = standard 
deviation, Res. = image resolution.
 Biome group Orthophoto Mean label Mean Res. Mean area  
 [N] quality (std.) [cm] (std.) [ha]  
 (Sub) Tropical 9 2.78 4.20 (1.90) 34.65 (28.64)  
 Boreal and Montane 11 2.55 3.15 (2.16) 8.54 (9.73)  
 Drylands 97 2.11 20.35 (9.28) 48.30 (300.24) 
 Temperate 317 2.71 4.52 (6.18) 17.94 (57.41)  
 Total 434 2.57 8.02 (9.54) 24.83 (150.25) 

for less dense tree crowns of drylands or Mediterranean forests, a bright 
ground often results in lower contrast with dead vegetation and can 
challenge the detection of dead trees (Fig.  2, bottom). These contrasts 
underscore that cross-biome heterogeneity in visual appearance is 
essential for training and fairly evaluating segmentation models that 
are robust and transferable.

Building on diverse community contributions to the deadtrees.earth 
database, the dataset used here captures a broad spectrum of image 
resolutions and spatial extents, which provides valuable variability for 
model development. Specifically, the dataset includes a wide varia-
tion of different image resolutions, ranging from 1 cm to 26.2 cm. 
Images acquired by drones typically have resolutions between 1 cm 
and 5 cm, given a common operating height between 60 and 120 m 
above ground level, and now widely available 4K RGB image sensors. 
Older images and these from public aerial surveys typically have an 
image resolution coarser than 10 cm, which only suffices for reliable 
standing deadwood detection in a subset of biomes and may not unveil 
partial dieback (Mosig et al., 2024). Within biome groups, we also 
observed large variations in the orthophoto footprint size (see Table  1). 
For example, the drylands biome group contains a single orthophoto of 
2500 ha, while the mean footprint is 48.3 ha for this biome. This un-
even distribution of orthophoto resolutions and coverage exacerbated 
the stark uneven geographic distribution already present across biome 
groups.

3. Methods

3.1. Data preprocessing

To prepare the aerial images and standing deadwood labels for 
semantic segmentation, we applied a series of preprocessing steps, 
including rasterization, reprojection, rescaling, and tiling. Each of these 
steps is critical in transforming the raw data into a format suitable for 
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Fig. 2. Comparison of fixed tile sizes (1024 pixels) across the target range of resolutions. Yellow boxes outline the extent of the tile for the next resolution. (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
training a segmentation model that generalizes across a wide range of 
common drone-shot image resolutions.
Label rasterization. The vector polygons delineating standing dead-
wood were transformed into raster images, where standing deadwood 
was assigned the value 1 and background the value 0, creating pixel-
level masks of the original image, using the original spatial resolution 
of the associated image. Additionally, we added a placeholder for areas 
outside the area of interest, denoted by the value 255. These areas 
are excluded from the loss calculation and evaluation in later steps, 
allowing us to process tiles that contain areas outside the area of 
interest without penalizing the model.
Reprojection. To standardize the spatial reference of the aerial images, 
we reprojected all orthophotos and masks to the respective Universal 
Transverse Mercator (UTM) zone that was derived based on the WGS84 
centroid of each orthophoto. Each UTM coordinate reference system is 
only valid for specific regions on Earth but minimizes distortion and 
maximizes distance precision. Furthermore, the unit of the coordinate 
reference system is meters allowing straightforward and precise calcu-
lation of the image resolution and facilitating down-scaling to other 
lower resolutions.
Rescaling. As a result of different flight heights and sensors, aerial 
images from drones and airplanes are acquired at different resolutions. 
Therefore, we augmented our dataset with a progressive down-scaling 
of the images and masks (Fig.  2). This rescaling is crucial for the 
generalization capabilities of our segmentation model. By providing 
more training examples at different resolution levels, it enables the 
model to perform accurately across various scales. We incrementally 
downscaled the images and masks to a fixed set of resolutions between 
2 cm and 28 cm per pixel in 2 cm steps. This means an orthophoto with 
an original resolution of 14.5 cm was downscaled to 16, 18, . . . , 26 cm. 
The orthophoto and mask at its original resolution and the resampled 
versions were then used for further analysis.
Tiling. The segmentation model (described below) requires all images 
and masks to be represented in a consistent shape. The rescaled or-
thophotos and masks were divided into tiles of 1024 × 1024 pixels. 
For the lowest resolutions of 1 cm, this ensures a spatial context 
of 10.24 m (Jucker et al., 2022). The tiles were extracted with an 
overlap of 50% across orthophotos, increasing the amount of available 
training data. Lastly, we removed tiles from the dataset that have more 
than 80% no data values. While it may be intuitive to purge tiles 
without standing deadwood in preprocessing, they are necessary during 
training for the model to generalize across non-vegetated areas, such as 
non-forest areas or healthy forests.
4 
3.2. Sampling

The orthophotos and derived tiles are unevenly distributed across 
biome groups, resolutions, standing deadwood occurrence, and or-
thophotos (see Section 2). Additionally, the rescaling process exacer-
bates the imbalance across image resolutions. This happens because 
fewer low-resolution tiles can be generated from the same orthophoto, 
as they cover larger areas. To counteract these imbalances we imple-
mented a multi-dimensional sampling process.

In each training epoch, the dataset was grouped by biome group, 
resolution bin, and a binary standing deadwood attribute that indicates 
whether at least one pixel in the tile represents standing deadwood. 
This resulted in 112 groups, calculated as follows:
4(biome gr.) ⋅ 14(res. bins) ⋅ 2(deadwood) = 112

To avoid the over-representation of tiles from larger orthophotos, we 
randomly selected a maximum of 50 tiles per orthophoto within each 
group. We then selected 100 random tiles per group, and oversampled 
when fewer than 100 tiles were available. This process yielded 112 ×
100 = 11200 training tiles per epoch.

3.3. Segmentation model setup

U-Net has become one of the most widely used model architectures 
for semantic segmentation, largely because it consistently outperforms 
traditional convolutional neural networks. Its strength lies in its ability 
to efficiently and accurately localize features, even when input tile sizes 
vary (Ronneberger et al., 2015). The model uses an encoder–decoder 
structure, where the encoder compresses the input into a compact set 
of features, while the decoder reconstructs a segmentation map. One 
key advantage of this design is that the encoder part of the model can 
be interchanged with different model structures.

Based on this, recent work by Veitch-Michaelis et al. (2024) showed 
that using a transformer-based SegFormer encoder for semantic seg-
mentation yielded very promising results. Following this approach, we 
chose the largest SegFormer variant (B5), which has about 81 million 
trainable parameters and performed best in general tree segmentation. 
The resulting model consists of a SegFormer-B5 encoder, pretrained 
on ImageNet, paired with the standard U-Net decoder implemented 
using the segmentation_models.pytorch library (Iakubovskii, 
2019). In total, the model, including the encoder and decoder parts, 
consists of 84.7 million trainable parameters. For training, we used 
the AdamW optimizer, which is a widely used optimizer in computer 
vision applications (Loshchilov, 2017). We trained the segmentation 
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Fig. 3. Distribution of tiles after tiling across resolution (2–28 cm) and biome groups. Resolutions are grouped into bins, where the resolution indicates the upper 
bound of the bin. The heatmap is log-scaled. The upper histogram denotes the distribution across resolutions, and the right histogram across the major forest 
biomes. The histograms are split into tiles containing at least one pixel of standing deadwood and tiles without any standing deadwood.
model with PyTorch (Paszke et al., 2019), alongside Hugging Face’s 
Accelerate library (Gugger et al., 2022), which exposes a high-level API 
for distributed training of the segmentation model, allowing it to be 
trained on multiple GPUs with little implementation effort.

We incorporated dynamic data augmentation steps performed dur-
ing model training, including random vertical and horizontal flipping 
of both the image and its corresponding segmentation mask, along with 
random contrast adjustments to the image. These augmentations help 
prevent the model from memorizing specific training examples and 
enhance its ability to generalize across varying lighting conditions in 
the imagery. The model takes batches of the augmented image tiles 
as input and outputs continuous masks, which are converted into a 
probability distribution via a sigmoid layer. To obtain a binary mask 
from the probabilities, we classified pixels with probabilities 𝑝 ≥ 0.5 as 
standing deadwood.

The model was trained for 105 epochs. The learning rate was 
initially set to 10−9 and linearly warmed up to 10−5 over the first 15 
epochs, after which it was maintained at 10−5. A weight decay of 10−4
was applied throughout training.

For computational efficiency, we utilized the fp16 floating-point 
format, which reduces precision while significantly accelerating train-
ing due to its smaller bit size (16 bits compared to 32 in fp32). Unlike
fp16, which also uses 16 bits, bf16 allocates 8 bits to the exponent 
(compared to 5 in bf16), enabling it to represent larger gradients. We 
used three NVIDIA A6000 GPUs in parallel with a batch size of four per 
GPU, thus 12 tiles in total.

3.4. Loss function

Class imbalance within a tile is a common challenge in segmenta-
tion tasks. Here, it originated from the natural disproportion between 
standing deadwood and the background pixels in the imagery. This im-
balance is exacerbated by scattered mortality, often made up of only a 
dozen of pixels per dead tree in low-resolution tiles. This is particularly 
problematic when evaluating model performance, as traditional metrics 
like accuracy become misleading. For example, if 97.5% of the pixels 
belong to the background class, a model that predicts only background 
pixels — ignoring standing deadwood entirely — would still achieve 
a high overall pixel accuracy of 0.975. While this may result in high 
overall accuracy, it would lead to poor recall for the minority class 
(standing deadwood).

To address this issue, we employ Focal Tversky Loss, as recom-
mended by Jadon (2020). The Focal Tversky Loss (Abraham and Khan, 
2019) is derived from the Tversky Index (𝑇 𝐼), which generalizes the 
widely used Dice Score Coefficient. The Dice Score Coefficient is a com-
mon metric for evaluating the overlap between predicted segmentation 
5 
maps and reference labels, and it is mathematically equivalent to the 
F1-score (Müller et al., 2022). A limitation of the Dice Score Coefficient 
is that it penalizes false positives (background classified as standing 
deadwood) and false negatives (standing deadwood classified as back-
ground) equally. Since background pixels are far more abundant in our 
case, this can cause the model to favor negative predictions, leading 
to poor performance on the minority class (standing deadwood). The 
𝑇 𝐼 addresses this by introducing the weighting parameters 𝛼 and 𝛽, 
which allow the asymmetric penalization of false positives and false 
negatives, depending on the chosen configuration. When 𝛼 = 𝛽 = 0.5, 
the 𝑇 𝐼 reduces to the Dice Score Coefficient. 𝑇 𝐼 can be described as 
follows:

𝑇 𝐼 =
∑

(𝑦 ⋅ 𝑦̂) + 𝜖
∑

(𝑦 ⋅ 𝑦̂) + 𝛼 ⋅
∑

((1 − 𝑦) ⋅ 𝑦̂) + 𝛽 ⋅
∑

(𝑦 ⋅ (1 − 𝑦̂)) + 𝜖

where 𝑦 represents the standing deadwood probability of the reference 
data, and 𝑦̂ is the predicted probability. To maintain numerical stability 
when the reference probability approaches zero, a small constant 𝜖
is added to the equation. The Tversky Loss (TL) is defined as 𝑇𝐿 =
(1−𝑇 𝐼). Further, the Focal Tversky Loss (𝐹𝑇𝐿) introduces a modulation 
parameter 𝛾, adjusting the focus on difficult samples: 𝐹𝑇𝐿 = (1−𝑇 𝐼)𝛾 . 
When 𝛾 is greater than one, samples with a high 𝑇 𝐼 — indicating 
accurate predictions — contribute less to the overall loss due to the 
nonlinear relationship between 𝑇 𝐼 and loss. In our case, a 𝛾 > 1 is 
preferable to focus on harder-to-learn examples and to achieve a steeper 
gradient on examples where segmentation performance is lacking.

We incorporated the area of interest in the training process to ensure 
that the loss is only applied in labeled areas of the image. We modified 
the Focal Tversky Loss implementation to incorporate a weight mask, 
which sets the loss to zero outside the area of interest. We determined 
𝛼 = 0.2, 𝛽 = 0.8 and 𝛾 = 2 as the parameters of the Focal Tversky Loss 
based early experiments optimizing the trade-off between precision and 
recall.

3.5. Evaluation

We evaluated the model by computing the number of true positives 
(TP), false positives (FP), and false negatives (FN) for the standing 
deadwood class for each tile. Depending on the subsequent analysis, 
these pixel-based metrics were summed across groups (e.g., biome or 
resolution) of tiles and used to calculate the Precision (Eq. 3.5), Recall 
(Eq. 3.5) and F1-score (Eq. 3.5).

Precision = TP
TP + FP

Recall = TP

TP + FP
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Fig. 4. Mean F1-scores derived from the 3-fold spatial block cross-validation across biome groups and resolution bins. Note that F1-scores are obtained from 
heterogeneous and crowd-sourced labels and hence represent a conservative model performance estimate.
Table 2
F1-score, precision, and recall across biomes, for the respective best performing 
resolution.
 Biome group F1-score Precision Recall 
 (Sub) Tropical 0.51 0.40 0.69  
 Temperate 0.71 0.59 0.90  
 Boreal and Montane 0.60 0.48 0.81  
 Drylands 0.60 0.47 0.83  

F1-score = 2 × Precision × Recall
Precision + Recall

To robustly estimate the performance of the trained segmentation 
model, we employed a 3-fold spatial block cross-validation strategy, 
where each orthophoto is considered a spatial block. This prevents an 
overestimation of the model performance due to spatial autocorrela-
tion (Kattenborn et al., 2022). For evaluation, the last epoch (105) was 
chosen in all folds as training has fully converged here. No dynamic 
model selection or hyperparameter tuning was performed due to com-
putational constraints. The trained segmentation models were finally 
evaluated based on the combined independent cross-validation sets.

To visualize the resulting predictions as vectors and enable their 
use in other applications, we used the function findContours in the 
OpenCV Python library (Bradski, 2000) to convert the raster predic-
tions with a pixel value of ≥0.5 into polygons. The chosen algorithm 
supports the generation of both outer contours and interior holes. A 
single polygon corresponds to a contiguous deadwood area, which can 
correspond to a single dead branch, partial dieback, a fully dead tree, 
or a group of dead trees.

4. Results

The multi-step sampling scheme across biome group, resolution bin, 
and presence of deadwood pixels resulted in a total of 378,430 pairs of 
image tiles and their corresponding binary standing deadwood masks. 
The distribution of the generated tiles was highly skewed towards high-
resolution tiles in temperate regions (see Fig.  3). Temperate biomes and 
images with resolutions better than 4 cm were by far the most present 
examples. The smallest amount of training data was available for the 
boreal and montane biomes and for tropical regions. Low-resolution 
images were significantly underrepresented due to the sampling scheme 
and the real-world size of the labeled area that is required to obtain one 
low-resolution tile with a width and height of 1024 pixels. Lastly, across 
biome groups and resolution bins, tiles without any standing deadwood 
were generally more frequent than with standing deadwood.
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With spatial block cross-validation, the highest F1-score of 0.71 
was achieved for temperate biomes and the lowest of 0.51 for tropical 
regions (Table  2). The highest precision and recall were received for 
temperate forests, for which also the most amount of training data was 
available (see Fig.  3). The recall generally was 52.5% to 76.6% higher 
than the precision with 90% of standing deadwood pixels recovered in 
temperate forests. This yielded a mean F1-score performance of 0.61, 
averaged across biomes.

We found that the segmentation performance was inconsistent 
across resolutions (Fig.  4). In most cases, lower resolutions which 
contain less spatial detail, yielded comparably worse performance. 
However, for Temperate and Dryland biome groups, we observed an 
optimal resolution range for standing deadwood segmentation between 
4 cm and 8 cm. Here, the highest resolution bin (≤2 cm) yielded 
worse performance, on par with the much lower resolutions. The results 
for boreal and montane biomes did not follow this trend, and show 
almost exclusively a consistent decline in performance with coarser 
resolutions.

An additional qualitative evaluation of the predictions, based on 
visual interpretation of independent, crowd-sourced orthophotos from 
deadtrees.earth, revealed precise segmentation of standing deadwood 
and partial dieback in orthophotos (Fig.  5). Often, the predictions 
exceeded the segmentation quality and completeness of the labels. 
Moreover, this evaluation revealed several instances where predictions 
were true positives, while labels for an actual presence of standing 
deadwood or partial dieback were absent.

5. Discussion

We demonstrated the generalization of a segmentation model for 
segmenting standing deadwood including fully dead tree crowns and 
partial canopy dieback in orthophotos across biomes and resolutions 
from 2 to 28 cm.

The results suggested an optimal resolution for each biome, and the 
finest resolutions have generally not shown the highest performance. 
This could be explained by the fact that finer resolutions at a fixed 
tile size yield tiles with a smaller spatial extent (Fig.  2). This is in 
line with Schiefer et al. (2020), who found that the amount of real-
world spatial context and finer resolutions do not necessarily result 
in better accuracies. This would suggest that models trained with a 
tile size that is larger than 1024 pixels, which was used in this study,
e.g., 2048 pixels, would show a different optimal resolution. Another 
possible explanation for an optimal resolution is a link to tree crown 
architecture which varies heavily across biomes (Jucker et al., 2022). 
For example, in the boreal, mountain and temperate biomes tall forests 
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Fig. 5. Orthophotos from different biomes with predictions (blue) and manual labels (orange) with different label qualities. The noted precision, recall, and 
F1-score were computed for the respective displayed region. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
with continuous cover and lower structural diversity prevail, whereas 
in drylands and sub-tropical areas more vertically (subtropical) and 
horizontally (dryland) structured forests occur (Jucker et al., 2022).

The performance trends across resolutions (Fig.  4) as well as the 
number of tiles (Fig.  3) did not show entirely monotonic trends. For 
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example, the performance in the (Sub) Tropical biome group for a 
resolution of 26 cm is better than for 24 cm. The underlying cause 
is that tile generation only includes down-sampling of orthophotos, 
meaning one orthophoto in a particular biome is only represented in 
the resolutions at or lower than its original resolution. Additionally, 
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Fig. 6. Predictions in a diverse set of unlabeled high resolution orthophotos (<5 cm) across all forest biomes from the deadtrees.earth database (Mosig et al., 
2024). Top Left: Andalusia (Spain). Top Right: Sakhalin Island (Russia). Bottom Left: South Australia (Australia). Bottom Right.: Saxony (Germany). Coordinate 
reference system is EPSG:3857 in meters.
the extent of an orthophoto determines the coarsest resolution of tiles 
that can be generated from it, considering tile size and the maximum 
fraction of no data values. This creates a natural resolution limit, 
resulting in fewer tiles at lower resolutions.

The model performance remains stable for lower resolutions in tem-
perate and dryland biomes (Fig.  4). For boreal and tropical biomes the 
performance appears to decrease for lower image resolutions largely in 
synchrony with tile availability (Fig.  3). We argue that this decrease in 
performance does not reflect real-world settings but can be attributed 
to a small set of the same orthophotos that are downscaled to the 
respective resolutions (Table  1).

Compared to other studies on standing deadwood segmentation, 
such as Junttila et al. (2024) and Schiefer et al. (2023), the model 
performance appears low based on the F1-score alone. Here, visual 
inspection revealed that the key factor for comparably low performance 
scores was the variability in label accuracy across the crowd-sourced 
dataset (Fig.  5). The ability of the segmentation model to produce 
high precision values is directly correlated with the accuracy of the 
reference labels, reducing the overall F1-score, even when the model’s 
predictions prove to be more accurate than the labels themselves or 
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recover more partial dieback. In the nature of crowd-sourcing data, 
some contributions to the deadtrees.earth database clearly miss entire 
dead trees, and most commonly miss labels for partial dieback. These 
missing labels drastically decrease accuracy, resulting in a worse F1-
score in the model evaluation, even when predictions are accurate. Fig. 
5 demonstrates multiple examples of medium label quality leading to 
a low precision prediction, even though the segmented areas repre-
sent standing deadwood in the original image. Additionally, manually 
drawn polygons do not always precisely match the true tree crown 
contours; instead, they often approximate simpler polygons that may 
include areas beyond the crown. These labels inherently reduce pre-
cision when the model successfully segments individual tree crowns. 
Lastly, while label quality is relevant for any segmentation task, its rel-
evance is amplified with segmentation tasks at high image resolutions. 
Despite this heterogeneity in label quality and its imprint on the model 
performance scores, the visual inspection revealed that the model still 
learned to accurately segment standing deadwood (Fig.  5).

Dead trees in the form of individual snags, while technically consid-
ered standing deadwood, are less likely to be detected by the model, as 
the provided labels primarily target fully and partially dead canopy. 
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Fig. 7. Predictions in a set of low resolution orthophotos (>10 cm) across different forest biomes from the deadtrees.earth database (Mosig et al., 2024). Top Left: 
Barro Colorado Island, Panama. Top Right: Itirapina, Brazil. Bottom Left: Saxony, Germany. Bottom Right: Wetterzeube, Germany. Coordinate reference system 
is EPSG:3857 in meters.
Detecting such snags would likely require an airborne LiDAR-based ap-
proach, as demonstrated by Wing et al. (2015). However, this method 
is significantly more expensive than RGB-based alternatives and is also 
limited by the availability of reference data. Additionally, it is also 
important to emphasize that snags are generally of limited relevance 
for applied monitoring of tree mortality dynamics, as they can persist 
for decades and therefore may not represent recent mortality events or 
current forest health trends.

In this study, we trained a segmentation model for detecting fully 
dead tree crowns as well as partial canopy dieback across all forest 
biomes in varying resolutions. Training the model to generalize across 
multiple resolutions, the model must interpret full canopy mortality 
and partial dieback in varying levels of detail. Therefore, we trained 
the model at unprecedented image resolutions. While previous studies 
mostly focused on mapping tree mortality at coarse resolutions between 
10–30 cm (Junttila et al., 2024; Schwarz et al., 2023; Cheng et al., 
2024), here, we provide a model that can accurately detect standing 
deadwood from drone images with resolutions of a few centimeters to 
coarse representations as obtained from national airplane campaigns. 
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To demonstrate the model’s transferability to any orthophoto and any 
forest biome, we applied it to the entire orthophoto collection of 
deadtrees.earth. The resulting predictions are available and can be 
visualized as a vector layer on the website. A subset of the predictions 
is shown in Fig.  6 for high resolution imagery (<5 cm) and in Fig.  7 for 
lower resolution imagery (10 cm), illustrating that the model robustly 
handles diverse forest ecosystems, image resolutions, as well as partial 
and full dieback.

Considering the multi-resolution approach, the coverage across 
biomes and the multidimensional sampling scheme, computational 
complexity emerged as one of the biggest challenges. While the base 
imagery occupied 301 GiB of storage, the rescaled and tiled dataset 
occupied 943 GiB. Both tiles and the original images were compressed 
optimally with the DEFLATE algorithm. Given these constraints, we 
report results only for a SegFormer-based model and did not sys-
tematically benchmark alternative architectures or perform extensive 
hyperparameter optimization. Nevertheless, other state-of-the-art seg-
mentation methods may prove promising in this context, including U-
Net variants, DeepLabv3, HRNet (Ronneberger et al., 2015; Chen et al., 
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2017; Wang et al., 2021). To facilitate such comparisons, we release 
the machine-learning-ready dataset, and we expect our SegFormer-
based model to serve as a suitable baseline for future evaluations. We 
anticipate that community efforts leveraging this dataset will refine 
architectures and training regimes and further enhance monitoring of 
standing deadwood across biomes, resolutions, and forest types.

6. Conclusion & outlook

We trained and evaluated a deep learning-based pattern recog-
nition model with a dataset covering all forest biomes and image 
resolutions from 1 cm to 28 cm to segment dead tree crowns as well 
as partial canopy dieback. We observed variations in segmentation 
performance between biomes and determined the optimal resolution 
for specific biomes. Given that our dataset is severely skewed in several 
dimensions, we implemented a four-dimensional sampling scheme to 
facilitate the development of a generalizing model. Our model’s high 
quality and generalization ability were highlighted, as we observed 
qualitatively that the model output often segments standing deadwood 
more accurately than the crowd-sourced labels that the model was 
trained on. In the future, encoding additional metadata, such as biome, 
forest type, and resolution information, into the model encoder ap-
pears promising, as previous studies have demonstrated that integrating 
auxiliary information via a multi-modal approach can improve model 
performance (Heidarianbaei et al., 2024). Future model improvements 
will also build on the constantly increasing data availability of aerial 
imagery and corresponding labels at .

To the best of our knowledge, this is the first study to develop a 
method for mapping standing deadwood that is not limited to a specific 
biome or imagery resolution and can be applied across diverse forest 
ecosystems globally. For example, the model developed in this study 
can be directly used to assess the coverage of standing deadwood in any 
publicly available orthophotos, with resolutions finer than 30 cm, en-
abling large-scale monitoring of the standing deadwood across different 
landscapes. Further, we generated labels for the entire deadtrees.earth 
orthophoto database (Mosig et al., 2024) which now yields a globally 
accurate reference dataset of tree mortality. This could then be used 
as training data for satellite-based machine-learning models (Schiefer 
et al., 2023) or to evaluate existing products (Hansen et al., 2013; 
Senf et al., 2018). Our semantic segmentation model is tailored to 
aerial imagery with only RGB channels, as it is freely available from 
national aerial surveys or consumer-level drones. With these simple re-
quirements based on the data presented in the segmentation approach, 
the corresponding straightforward applicability and scalability may be 
key to contributing to our understanding of tree mortality dynamics at 
global scales.
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Appendix

A.1. Biome aggregation

All original biomes by Olson et al. (2001) were aggregated in four 
distinct biome groups:

• Boreal and Montane: ‘Boreal Forests/Taiga’ and ‘Montane Grass-
lands and Shrublands Tundra’

• Drylands: ‘Mediterranean Forests, Woodlands, and Scrub’,
‘Deserts and Xeric Shrublands’, and ‘Flooded Grasslands and 
Savannas’

• Temperate: ‘Temperate Broadleaf and Mixed Forests’, ‘Temperate 
Coniferous Forests’, and ‘Temperate Grasslands, Savannas, and 
Shrublands’

https://github.com/jmoeh/standing-deadwood
https://github.com/jmoeh/standing-deadwood
https://github.com/jmoeh/standing-deadwood
https://github.com/cmosig/deadtreesmodels
https://github.com/cmosig/deadtreesmodels
https://github.com/cmosig/deadtreesmodels
https://www.deadtrees.earth
https://www.deadtrees.earth
https://www.deadtrees.earth
https://www.deadtrees.earth
https://www.deadtrees.earth
https://www.deadtrees.earth
https://www.nfdi4earth.de/
https://www.mysnf.ch/grant.aspx?id=82ee2e84-bed0-4b15-9771-ea3271ee7240
https://www.mysnf.ch/grant.aspx?id=82ee2e84-bed0-4b15-9771-ea3271ee7240
https://www.mysnf.ch/grant.aspx?id=82ee2e84-bed0-4b15-9771-ea3271ee7240


J. Möhring et al. ISPRS Open Journal of Photogrammetry and Remote Sensing 18 (2025) 100104 
• (Sub) Tropical: ‘Tropical and Subtropical Moist Broadleaf
Forests’, ‘Tropical and Subtropical Dry Broadleaf Forests’, ‘Tropi-
cal and Subtropical Coniferous Forests’, ‘Tropical and Subtropical 
Grasslands, Savannas, and Shrublands’, and ‘Mangroves’

A.2. Acquisition date

For non-tropical regions, all orthophotos were captured during the 
leaf-on season of the respective biome, meaning all leafless branches 
and trees are standing deadwood. In tropical regions, the dataset con-
tains orthophotos throughout the entire year, as there is no reliable 
phenological dataset that can be naively applied as a filter. While this 
means that not all leafless trees are standing deadwood, it is irrelevant 
to the successful training of a segmentation model.

Data availability

The entire dataset of manual labels and aerial imagery that were 
used in this study are available as orthophoto and tiled dataset on 
https://deadtrees.earth/.
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