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ARTICLE INFO ABSTRACT

Dataset link: https://deadtrees.earth/ With tree mortality rates rising across many regions of the world, efficient methods to map dead trees are
becoming increasingly important to monitor forest dieback, assess ecological impacts, and guide management

I;‘Z,r:ioi;tiiea dwood strategies. Deep learning-based pattern recognition combined with the high spatial detail of aerial images from
Aerial images drones or airplanes provides an avenue for mapping dead tree crowns or partial canopy dieback, collectively
Orthophotos referred to as standing deadwood. However, current methods for mapping standing deadwood are limited to
Centimeter-scale images specific biomes or image resolutions. Here, we present a transformer-based semantic segmentation model that
Remote sensing generalizes across forest biomes and a wide range of image resolutions (1-28 cm) for mapping both dead tree
Tree mortality crowns and partial canopy dieback. Our approach combines a SegFormer-based transformer architecture for

image feature extraction and Focal Tversky Loss to mitigate class imbalance. We used a globally distributed
crowd-sourced dataset of 434 high-resolution aerial images and manual delineations of standing deadwood of
vastly varying quality. The orthophotos span all major forest biomes and cover 10,778 hectares. To further
mitigate imbalances across biomes, resolutions, deadwood occurrence, and image sources, we developed a four-
dimensional sampling scheme that ensures balanced representation during training. The models were trained
and evaluated using heterogeneous crowd-sourced data, which, as expected, negatively affects the F1-scores.
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A visual inspection on independent data highlights the very precise quality of the segmentation. Our analysis
revealed resolution-dependent performance variations across biomes, suggesting a relationship between optimal
mapping resolution and biome-specific characteristics. We make both our model and a machine-learning-ready
dataset publicly available on deadtrees.earth to support future research in tree mortality mapping.

1. Introduction

In recent years, elevated tree mortality has been observed in many
regions of the world (Hartmann et al., 2022; Trumbore et al., 2015;
Allen et al., 2015). Our ability to understand and quantify tree mor-
tality dynamics remains limited, as there is a lack of comprehensive,
globally applicable data and assessment methods. Developing effective
methods for assessing tree mortality across forest types and biomes
is crucial for a consistent monitoring and informing forest manage-
ment strategies from regional to global scales (The International Tree
Mortality Network et al., 2025).

Remote sensing has proven highly effective for mapping standing
deadwood canopies at local to regional scales. In particular, aerial
imagery, when combined with deep-learning-based segmentation algo-
rithms, provides a powerful means to map dead crowns (Kattenborn
et al., 2021; Schiefer et al., 2023; Cheng et al., 2024; Khatri-Chhetri
et al., 2024). Such pattern recognition algorithms can detect charac-
teristic spatial features of dead tree crowns to locate or segment dead
tree crowns. For example, Cheng et al. (2024) applied instance seg-
mentation to RGB-NIR airplane imagery across California and achieved
individual dead tree detection accuracies of 80%-90%. In the same
region, Khatri-Chhetri et al. (2024) showed for a semantic segmentation
of tree crowns very high-resolution RGB imagery (0.1 m) yielded supe-
rior performance (F; = 0.76) compared to 1 m hyperspectral imagery
(F; = 0.69) or 0.6 m RGBNIR imagery (F, = 0.61). At even finer
resolutions (2—-4 cm), Schiefer et al. (2020, 2023) demonstrated that
drone-based orthophotos, together with semantic segmentation, enable
robust mapping of dead canopies (F; = 0.75, 0.85) ranging from entire
crowns down to individual branches.

The demonstrated effectiveness of RGB aerial imagery for mapping
standing deadwood builds on two key properties. First, dead crowns
and leafless branches lack green foliage and therefore appear in distinc-
tive gray-brown tones that contrast sharply with the green canopies
of living trees (Schiefer et al., 2023). Second, RGB imagery provides
the highest spatial detail compared to other spectral regions, because
the sun emits most of its energy in the visible domain, enabling high
signal-to-noise ratios, shorter exposure times, and ultimately sharper
images (Khatri-Chhetri et al., 2024; Kattenborn et al., 2021). While
RGB airplane imagery is very effective for large scale assessments,
drone orthophotos with centimeter-scale resolution are particularly
promising, as their fine spatial detail enables capturing entire dead tree
crowns but also early and partial canopy dieback (Mosig et al., 2024;
Schiefer et al., 2023).

Despite these growing capabilities, current approaches for harness-
ing RGB imagery remain fragmented. Most studies are restricted to
either drone or airplane imagery, to specific spatial resolutions, or to
particular forest types and regions. As a result, existing models are
highly specialized and often lack transferability beyond their origi-
nal training context (Khatri-Chhetri et al., 2024; Cheng et al., 2024;
Schiefer et al., 2023; Junttila et al., 2024; Schwarz et al., 2024; Allen
et al.,, 2024). Yet, to advance operational and consistent monitoring
of forest mortality we require transferable computer vision models
that can seamlessly integrate imagery from both drones and airplanes,
generalize across biomes, and capture the full spectrum of canopy
decline, from early-stage partial dieback to fully dead tree crowns (The
International Tree Mortality Network et al., 2025).

Several factors complicate the training of a generalizable computer
vision model for detecting standing deadwood in aerial images. One
major challenge lies in the high variability of visual tree characteristics,

such as leaf morphology, branching architecture, and crown geometry,
which differ substantially across biomes and species (Mosig et al.,
2024; Jucker et al., 2024). This variability is particularly pronounced in
forest types dominated by broadleaved species, which typically exhibit
more complex crown structures and multilayered canopies compared to
coniferous forests (Zielewska-Biittner et al., 2020). As a result, detecting
tree mortality is especially difficult in tropical, dryland, and deciduous
temperate forest ecosystems (Schiefer et al., 2023; Cheng et al., 2024).
Additionally, open-canopy forests — such as those in dryland, boreal, or
montane regions — pose further challenges. In these systems, visually
similar features like bare soil, dead understory vegetation, or coarse
woody debris may be confused with standing dead trees, complicating
accurate detection.

Another challenge lies in the nature of the aerial imagery. Sensor
characteristics — such as focal length, shutter type, and resolution
— as well as operational conditions like flight speed and wind, can
impact the visual appearance of tree canopies and the performance of
image-matching techniques (Frey et al., 2018; Denter et al., 2022), and
computer vision models (Kattenborn et al., 2021). Aerial imagery can
range in resolutions from less than 1 cm, in drone flights, to 30 cm
or even 60 cm in airplane imagery (see https://github.com/YanCheng-
go/open-aerial-photos). To manage this variability, aerial images are
commonly resampled to a unified resolution (Schiefer et al., 2023).
However, this process can discard potentially valuable information rele-
vant to tree mortality detection. Also, image processing — particularly
the ortho-rectification process, which aligns and projects overlapping
top-down images into an orthophoto — can introduce minor distortions
in the resulting orthophotos. Lastly, the illumination conditions during
the data acquisitions, such as cloud cover, atmospheric composition,
and related scattering properties can introduce a substantial variability
in the appearance of plant canopies, which can affect the transferability
of pattern recognition models (Kattenborn et al., 2022). These factors
collectively present significant challenges in training and applying
generic segmentation models to identify standing deadwood in aerial
images.

Training a robust segmentation model for standing deadwood re-
quires a comprehensive dataset covering the above-described variations
in image and vegetation properties. Fortunately, the availability of
orthophotos is rapidly expanding, and there is a growing momentum
among researchers and institutions to openly share these data (Mosig
et al.,, 2024). The largest, crowd-sourced orthophoto repository for
the forest domain is the deadtrees.earth initiative, which hosts over
3000 individual datasets contributed by more than 300 collaborators
from over 100 institutions. This extensive collective dataset consists of
aerial images from drones and airplanes across all biomes and major
forest types, where standing deadwood delineations were provided
for a subset of orthophotos. Here, we leverage this crowd-sourced
dataset using a tailored data sampling and image rescaling approach
to train a generalizable semantic segmentation model based on a vi-
sion transformer architecture. This model is designed to map standing
deadwood across different image resolutions from 1 to 28 cm and
all major biomes. We demonstrate its ability to identify deadwood
features ranging from partial canopy dieback to fully dead tree crowns.
Moreover, by testing the model with independent orthophotos across
all biomes, we demonstrate that the model generalizes across different
biomes, forest types, and image characteristics. Beyond developing a
generalizing semantic segmentation model, a key contribution of this
study is a publicly available, machine-learning-ready tiled dataset for
multi-scale cross-biome mapping of tree mortality. This dataset and the
trained model provide the first benchmark opportunities and baseline
for evaluating globally transferable segmentation models for deadwood
detection.
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Fig. 1. Locations of manually labeled orthophotos. Background colors denote aggregated biome groups based on Olson et al. (2001). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

2. Dataset

For this study, we extracted all orthophotos with manual labels from
deadtrees.earth, distributed across all major forested biomes (Mosig
et al., 2024). The deadtrees.earth database provides high-resolution
aerial images collected from drones and airplanes, where a subset in-
cludes manual segmentation labels. We only selected a subset of images
with resolutions finer than or equal to 28 cm, as a prior analysis did
not indicate promising results beyond this image resolution. Addition-
ally, we extracted the labels from deadtrees.earth, which are manual
delineations of dead tree crowns or partial canopy dieback (leafless
branches) based on visual interpretation. Given the crowd-sourced
nature of these labels from various researchers, deadtrees.earth cate-
gorized the labels into three groups by quality, that is, low, medium,
and high (Mosig et al., 2024). We only used those with medium or high
quality. High-quality labels precisely delineate the shape of dead trees
as detailed polygons, capturing fine features such as dead branches.
Medium-quality labels provide only approximations, typically as simple
circles, and may not capture partial dieback. Labels that are highly
inaccurate and unsuitable for effective model training are considered
low-quality. Including these medium-quality datasets was necessary to
ensure coverage across all ecosystems, but it is important to consider
during the later model performance assessment, as the limited precision
of the labels may lead to lower evaluation scores even when the model
performs accurately or better than the labels themselves. Lastly, each
set of orthophotos and labels includes a polygon defining the area of
interest. This is the region within the orthophoto where all visible
dead trees, and in some cases partial dieback, were labeled as standing
deadwood. Areas outside the area of interest are excluded from model
training and evaluation.

The final dataset selected for model training and performance as-
sessment consists of 434 sets of orthophotos and labels, covering a
total labeled area of 10,778 hectares across all forested biomes. We
assigned each image to a biome using the intersection of the orthophoto
centroid with the biome boundaries defined by Olson et al. (2001).
All original biomes by Olson et al. (2001) were then aggregated into
coarser biome groups for simplicity (see Appendix A.1). The resulting
four biome groups were (1) (sub) tropical, (2) boreal and montane, (3)
drylands (including Mediterranean), and (4) temperate forests (see Fig.
1). Given its broad coverage, the deadtrees.earth dataset encompasses
substantial variation in biome-specific characteristics. Different biomes
inherit diverse visual characteristics across the datasets regarding tree
species diversity, understory vegetation, and forest floor properties.

For example, orthophotos from dense temperate broadleaf and
mixed forests can provide a clear visual distinction of dead and alive
canopies, as standing deadwood is easily distinguishable against the
darker canopy of intact trees (Fig. 2, top). In contrast, in open forests or

Table 1

Dataset distribution across biomes. Resolution is computed per orthophoto
and then averaged per biome group. Label quality is a categorical value of
1 (low quality, not present), 2 (medium quality), or 3 (high quality), reported
per orthophoto (Mosig et al., 2024) and averaged by biome. std. = standard
deviation, Res. = image resolution.

Biome group Orthophoto ~ Mean label =~ Mean Res. Mean area

[N] quality (std.) [ecm] (std.) [ha]
(Sub) Tropical 9 2.78 4.20 (1.90) 34.65 (28.64)
Boreal and Montane 11 2.55 3.15 (2.16) 8.54 (9.73)
Drylands 97 2.11 20.35 (9.28)  48.30 (300.24)
Temperate 317 2.71 4.52 (6.18) 17.94 (57.41)
Total 434 2.57 8.02 (9.54) 24.83 (150.25)

for less dense tree crowns of drylands or Mediterranean forests, a bright
ground often results in lower contrast with dead vegetation and can
challenge the detection of dead trees (Fig. 2, bottom). These contrasts
underscore that cross-biome heterogeneity in visual appearance is
essential for training and fairly evaluating segmentation models that
are robust and transferable.

Building on diverse community contributions to the deadtrees.earth
database, the dataset used here captures a broad spectrum of image
resolutions and spatial extents, which provides valuable variability for
model development. Specifically, the dataset includes a wide varia-
tion of different image resolutions, ranging from 1 cm to 26.2 cm.
Images acquired by drones typically have resolutions between 1 cm
and 5 cm, given a common operating height between 60 and 120 m
above ground level, and now widely available 4K RGB image sensors.
Older images and these from public aerial surveys typically have an
image resolution coarser than 10 cm, which only suffices for reliable
standing deadwood detection in a subset of biomes and may not unveil
partial dieback (Mosig et al., 2024). Within biome groups, we also
observed large variations in the orthophoto footprint size (see Table 1).
For example, the drylands biome group contains a single orthophoto of
2500 ha, while the mean footprint is 48.3 ha for this biome. This un-
even distribution of orthophoto resolutions and coverage exacerbated
the stark uneven geographic distribution already present across biome
groups.

3. Methods
3.1. Data preprocessing

To prepare the aerial images and standing deadwood labels for
semantic segmentation, we applied a series of preprocessing steps,

including rasterization, reprojection, rescaling, and tiling. Each of these
steps is critical in transforming the raw data into a format suitable for
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Fig. 2. Comparison of fixed tile sizes (1024 pixels) across the target range of resolutions. Yellow boxes outline the extent of the tile for the next resolution. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

training a segmentation model that generalizes across a wide range of
common drone-shot image resolutions.

Label rasterization. The vector polygons delineating standing dead-
wood were transformed into raster images, where standing deadwood
was assigned the value 1 and background the value 0, creating pixel-
level masks of the original image, using the original spatial resolution
of the associated image. Additionally, we added a placeholder for areas
outside the area of interest, denoted by the value 255. These areas
are excluded from the loss calculation and evaluation in later steps,
allowing us to process tiles that contain areas outside the area of
interest without penalizing the model.

Reprojection. To standardize the spatial reference of the aerial images,
we reprojected all orthophotos and masks to the respective Universal
Transverse Mercator (UTM) zone that was derived based on the WGS84
centroid of each orthophoto. Each UTM coordinate reference system is
only valid for specific regions on Earth but minimizes distortion and
maximizes distance precision. Furthermore, the unit of the coordinate
reference system is meters allowing straightforward and precise calcu-
lation of the image resolution and facilitating down-scaling to other
lower resolutions.

Rescaling. As a result of different flight heights and sensors, aerial
images from drones and airplanes are acquired at different resolutions.
Therefore, we augmented our dataset with a progressive down-scaling
of the images and masks (Fig. 2). This rescaling is crucial for the
generalization capabilities of our segmentation model. By providing
more training examples at different resolution levels, it enables the
model to perform accurately across various scales. We incrementally
downscaled the images and masks to a fixed set of resolutions between
2 cm and 28 cm per pixel in 2 cm steps. This means an orthophoto with
an original resolution of 14.5 cm was downscaled to 16, 18, ..., 26 cm.
The orthophoto and mask at its original resolution and the resampled
versions were then used for further analysis.

Tiling. The segmentation model (described below) requires all images
and masks to be represented in a consistent shape. The rescaled or-
thophotos and masks were divided into tiles of 1024 x 1024 pixels.
For the lowest resolutions of 1 cm, this ensures a spatial context
of 10.24 m (Jucker et al., 2022). The tiles were extracted with an
overlap of 50% across orthophotos, increasing the amount of available
training data. Lastly, we removed tiles from the dataset that have more
than 80% no data values. While it may be intuitive to purge tiles
without standing deadwood in preprocessing, they are necessary during
training for the model to generalize across non-vegetated areas, such as
non-forest areas or healthy forests.

3.2. Sampling

The orthophotos and derived tiles are unevenly distributed across
biome groups, resolutions, standing deadwood occurrence, and or-
thophotos (see Section 2). Additionally, the rescaling process exacer-
bates the imbalance across image resolutions. This happens because
fewer low-resolution tiles can be generated from the same orthophoto,
as they cover larger areas. To counteract these imbalances we imple-
mented a multi-dimensional sampling process.

In each training epoch, the dataset was grouped by biome group,
resolution bin, and a binary standing deadwood attribute that indicates
whether at least one pixel in the tile represents standing deadwood.
This resulted in 112 groups, calculated as follows:

4(biome gr.) - 14(res. bins) - 2(deadwood) = 112

To avoid the over-representation of tiles from larger orthophotos, we
randomly selected a maximum of 50 tiles per orthophoto within each
group. We then selected 100 random tiles per group, and oversampled
when fewer than 100 tiles were available. This process yielded 112 X
100 = 11200 training tiles per epoch.

3.3. Segmentation model setup

U-Net has become one of the most widely used model architectures
for semantic segmentation, largely because it consistently outperforms
traditional convolutional neural networks. Its strength lies in its ability
to efficiently and accurately localize features, even when input tile sizes
vary (Ronneberger et al., 2015). The model uses an encoder-decoder
structure, where the encoder compresses the input into a compact set
of features, while the decoder reconstructs a segmentation map. One
key advantage of this design is that the encoder part of the model can
be interchanged with different model structures.

Based on this, recent work by Veitch-Michaelis et al. (2024) showed
that using a transformer-based SegFormer encoder for semantic seg-
mentation yielded very promising results. Following this approach, we
chose the largest SegFormer variant (B5), which has about 81 million
trainable parameters and performed best in general tree segmentation.
The resulting model consists of a SegFormer-B5 encoder, pretrained
on ImageNet, paired with the standard U-Net decoder implemented
using the segmentation_models.pytorch library (Iakubovskii,
2019). In total, the model, including the encoder and decoder parts,
consists of 84.7 million trainable parameters. For training, we used
the AdamW optimizer, which is a widely used optimizer in computer
vision applications (Loshchilov, 2017). We trained the segmentation
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bound of the bin. The heatmap is log-scaled. The upper histogram denotes the distribution across resolutions, and the right histogram across the major forest
biomes. The histograms are split into tiles containing at least one pixel of standing deadwood and tiles without any standing deadwood.

model with PyTorch (Paszke et al., 2019), alongside Hugging Face’s
Accelerate library (Gugger et al., 2022), which exposes a high-level API
for distributed training of the segmentation model, allowing it to be
trained on multiple GPUs with little implementation effort.

We incorporated dynamic data augmentation steps performed dur-
ing model training, including random vertical and horizontal flipping
of both the image and its corresponding segmentation mask, along with
random contrast adjustments to the image. These augmentations help
prevent the model from memorizing specific training examples and
enhance its ability to generalize across varying lighting conditions in
the imagery. The model takes batches of the augmented image tiles
as input and outputs continuous masks, which are converted into a
probability distribution via a sigmoid layer. To obtain a binary mask
from the probabilities, we classified pixels with probabilities p > 0.5 as
standing deadwood.

The model was trained for 105 epochs. The learning rate was
initially set to 10~ and linearly warmed up to 10~ over the first 15
epochs, after which it was maintained at 10~5. A weight decay of 10~*
was applied throughout training.

For computational efficiency, we utilized the £p16 floating-point
format, which reduces precision while significantly accelerating train-
ing due to its smaller bit size (16 bits compared to 32 in £p32). Unlike
£p16, which also uses 16 bits, b£16 allocates 8 bits to the exponent
(compared to 5 in bf16), enabling it to represent larger gradients. We
used three NVIDIA A6000 GPUs in parallel with a batch size of four per
GPU, thus 12 tiles in total.

3.4. Loss function

Class imbalance within a tile is a common challenge in segmenta-
tion tasks. Here, it originated from the natural disproportion between
standing deadwood and the background pixels in the imagery. This im-
balance is exacerbated by scattered mortality, often made up of only a
dozen of pixels per dead tree in low-resolution tiles. This is particularly
problematic when evaluating model performance, as traditional metrics
like accuracy become misleading. For example, if 97.5% of the pixels
belong to the background class, a model that predicts only background
pixels — ignoring standing deadwood entirely — would still achieve
a high overall pixel accuracy of 0.975. While this may result in high
overall accuracy, it would lead to poor recall for the minority class
(standing deadwood).

To address this issue, we employ Focal Tversky Loss, as recom-
mended by Jadon (2020). The Focal Tversky Loss (Abraham and Khan,
2019) is derived from the Tversky Index (7'I), which generalizes the
widely used Dice Score Coefficient. The Dice Score Coefficient is a com-
mon metric for evaluating the overlap between predicted segmentation

maps and reference labels, and it is mathematically equivalent to the
Fl-score (Miiller et al., 2022). A limitation of the Dice Score Coefficient
is that it penalizes false positives (background classified as standing
deadwood) and false negatives (standing deadwood classified as back-
ground) equally. Since background pixels are far more abundant in our
case, this can cause the model to favor negative predictions, leading
to poor performance on the minority class (standing deadwood). The
T1I addresses this by introducing the weighting parameters « and g,
which allow the asymmetric penalization of false positives and false
negatives, depending on the chosen configuration. When a = g = 0.5,
the TT reduces to the Dice Score Coefficient. TT can be described as
follows:
_ YO-Pte
XO-Pta-Xd=»-N+p-Ty-A-9)+e
where y represents the standing deadwood probability of the reference
data, and j is the predicted probability. To maintain numerical stability
when the reference probability approaches zero, a small constant e
is added to the equation. The Tversky Loss (TL) is defined as TL =
(1=T1). Further, the Focal Tversky Loss (FT L) introduces a modulation
parameter y, adjusting the focus on difficult samples: FTL = (1-T1)".
When y is greater than one, samples with a high TI — indicating
accurate predictions — contribute less to the overall loss due to the
nonlinear relationship between T'I and loss. In our case, a y > 1 is
preferable to focus on harder-to-learn examples and to achieve a steeper
gradient on examples where segmentation performance is lacking.

We incorporated the area of interest in the training process to ensure
that the loss is only applied in labeled areas of the image. We modified
the Focal Tversky Loss implementation to incorporate a weight mask,
which sets the loss to zero outside the area of interest. We determined
a=0.2, f=0.8 and y = 2 as the parameters of the Focal Tversky Loss
based early experiments optimizing the trade-off between precision and
recall.

TI1

3.5. Evaluation

We evaluated the model by computing the number of true positives
(TP), false positives (FP), and false negatives (FN) for the standing
deadwood class for each tile. Depending on the subsequent analysis,
these pixel-based metrics were summed across groups (e.g., biome or
resolution) of tiles and used to calculate the Precision (Eq. 3.5), Recall
(Eq. 3.5) and F1-score (Eq. 3.5).

TP
TP + FP

TP
TP + FP

Precision =

Recall =
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Fig. 4. Mean Fl-scores derived from the 3-fold spatial block cross-validation across biome groups and resolution bins. Note that F1l-scores are obtained from
heterogeneous and crowd-sourced labels and hence represent a conservative model performance estimate.

Table 2
F1-score, precision, and recall across biomes, for the respective best performing
resolution.

Biome group F1-score Precision Recall
(Sub) Tropical 0.51 0.40 0.69
Temperate 0.71 0.59 0.90
Boreal and Montane 0.60 0.48 0.81
Drylands 0.60 0.47 0.83

Precision x Recall

Fl-score =2 X
Precision + Recall

To robustly estimate the performance of the trained segmentation
model, we employed a 3-fold spatial block cross-validation strategy,
where each orthophoto is considered a spatial block. This prevents an
overestimation of the model performance due to spatial autocorrela-
tion (Kattenborn et al., 2022). For evaluation, the last epoch (105) was
chosen in all folds as training has fully converged here. No dynamic
model selection or hyperparameter tuning was performed due to com-
putational constraints. The trained segmentation models were finally
evaluated based on the combined independent cross-validation sets.

To visualize the resulting predictions as vectors and enable their
use in other applications, we used the function findContours in the
OpenCV Python library (Bradski, 2000) to convert the raster predic-
tions with a pixel value of >0.5 into polygons. The chosen algorithm
supports the generation of both outer contours and interior holes. A
single polygon corresponds to a contiguous deadwood area, which can
correspond to a single dead branch, partial dieback, a fully dead tree,
or a group of dead trees.

4. Results

The multi-step sampling scheme across biome group, resolution bin,
and presence of deadwood pixels resulted in a total of 378,430 pairs of
image tiles and their corresponding binary standing deadwood masks.
The distribution of the generated tiles was highly skewed towards high-
resolution tiles in temperate regions (see Fig. 3). Temperate biomes and
images with resolutions better than 4 cm were by far the most present
examples. The smallest amount of training data was available for the
boreal and montane biomes and for tropical regions. Low-resolution
images were significantly underrepresented due to the sampling scheme
and the real-world size of the labeled area that is required to obtain one
low-resolution tile with a width and height of 1024 pixels. Lastly, across
biome groups and resolution bins, tiles without any standing deadwood
were generally more frequent than with standing deadwood.

With spatial block cross-validation, the highest Fl-score of 0.71
was achieved for temperate biomes and the lowest of 0.51 for tropical
regions (Table 2). The highest precision and recall were received for
temperate forests, for which also the most amount of training data was
available (see Fig. 3). The recall generally was 52.5% to 76.6% higher
than the precision with 90% of standing deadwood pixels recovered in
temperate forests. This yielded a mean F1-score performance of 0.61,
averaged across biomes.

We found that the segmentation performance was inconsistent
across resolutions (Fig. 4). In most cases, lower resolutions which
contain less spatial detail, yielded comparably worse performance.
However, for Temperate and Dryland biome groups, we observed an
optimal resolution range for standing deadwood segmentation between
4 cm and 8 cm. Here, the highest resolution bin (<2 cm) yielded
worse performance, on par with the much lower resolutions. The results
for boreal and montane biomes did not follow this trend, and show
almost exclusively a consistent decline in performance with coarser
resolutions.

An additional qualitative evaluation of the predictions, based on
visual interpretation of independent, crowd-sourced orthophotos from
deadtrees.earth, revealed precise segmentation of standing deadwood
and partial dieback in orthophotos (Fig. 5). Often, the predictions
exceeded the segmentation quality and completeness of the labels.
Moreover, this evaluation revealed several instances where predictions
were true positives, while labels for an actual presence of standing
deadwood or partial dieback were absent.

5. Discussion

We demonstrated the generalization of a segmentation model for
segmenting standing deadwood including fully dead tree crowns and
partial canopy dieback in orthophotos across biomes and resolutions
from 2 to 28 cm.

The results suggested an optimal resolution for each biome, and the
finest resolutions have generally not shown the highest performance.
This could be explained by the fact that finer resolutions at a fixed
tile size yield tiles with a smaller spatial extent (Fig. 2). This is in
line with Schiefer et al. (2020), who found that the amount of real-
world spatial context and finer resolutions do not necessarily result
in better accuracies. This would suggest that models trained with a
tile size that is larger than 1024 pixels, which was used in this study,
e.g, 2048 pixels, would show a different optimal resolution. Another
possible explanation for an optimal resolution is a link to tree crown
architecture which varies heavily across biomes (Jucker et al., 2022).
For example, in the boreal, mountain and temperate biomes tall forests
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with continuous cover and lower structural diversity prevail, whereas
in drylands and sub-tropical areas more vertically (subtropical) and
horizontally (dryland) structured forests occur (Jucker et al., 2022).
The performance trends across resolutions (Fig. 4) as well as the
number of tiles (Fig. 3) did not show entirely monotonic trends. For

example, the performance in the (Sub) Tropical biome group for a
resolution of 26 cm is better than for 24 cm. The underlying cause
is that tile generation only includes down-sampling of orthophotos,
meaning one orthophoto in a particular biome is only represented in
the resolutions at or lower than its original resolution. Additionally,
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the extent of an orthophoto determines the coarsest resolution of tiles
that can be generated from it, considering tile size and the maximum
fraction of no data values. This creates a natural resolution limit,
resulting in fewer tiles at lower resolutions.

The model performance remains stable for lower resolutions in tem-
perate and dryland biomes (Fig. 4). For boreal and tropical biomes the
performance appears to decrease for lower image resolutions largely in
synchrony with tile availability (Fig. 3). We argue that this decrease in
performance does not reflect real-world settings but can be attributed
to a small set of the same orthophotos that are downscaled to the
respective resolutions (Table 1).

Compared to other studies on standing deadwood segmentation,
such as Junttila et al. (2024) and Schiefer et al. (2023), the model
performance appears low based on the Fl-score alone. Here, visual
inspection revealed that the key factor for comparably low performance
scores was the variability in label accuracy across the crowd-sourced
dataset (Fig. 5). The ability of the segmentation model to produce
high precision values is directly correlated with the accuracy of the
reference labels, reducing the overall F1-score, even when the model’s
predictions prove to be more accurate than the labels themselves or

recover more partial dieback. In the nature of crowd-sourcing data,
some contributions to the deadtrees.earth database clearly miss entire
dead trees, and most commonly miss labels for partial dieback. These
missing labels drastically decrease accuracy, resulting in a worse F1-
score in the model evaluation, even when predictions are accurate. Fig.
5 demonstrates multiple examples of medium label quality leading to
a low precision prediction, even though the segmented areas repre-
sent standing deadwood in the original image. Additionally, manually
drawn polygons do not always precisely match the true tree crown
contours; instead, they often approximate simpler polygons that may
include areas beyond the crown. These labels inherently reduce pre-
cision when the model successfully segments individual tree crowns.
Lastly, while label quality is relevant for any segmentation task, its rel-
evance is amplified with segmentation tasks at high image resolutions.
Despite this heterogeneity in label quality and its imprint on the model
performance scores, the visual inspection revealed that the model still
learned to accurately segment standing deadwood (Fig. 5).

Dead trees in the form of individual snags, while technically consid-
ered standing deadwood, are less likely to be detected by the model, as
the provided labels primarily target fully and partially dead canopy.
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Detecting such snags would likely require an airborne LiDAR-based ap-
proach, as demonstrated by Wing et al. (2015). However, this method
is significantly more expensive than RGB-based alternatives and is also
limited by the availability of reference data. Additionally, it is also
important to emphasize that snags are generally of limited relevance
for applied monitoring of tree mortality dynamics, as they can persist
for decades and therefore may not represent recent mortality events or
current forest health trends.

In this study, we trained a segmentation model for detecting fully
dead tree crowns as well as partial canopy dieback across all forest
biomes in varying resolutions. Training the model to generalize across
multiple resolutions, the model must interpret full canopy mortality
and partial dieback in varying levels of detail. Therefore, we trained
the model at unprecedented image resolutions. While previous studies
mostly focused on mapping tree mortality at coarse resolutions between
10-30 cm (Junttila et al., 2024; Schwarz et al., 2023; Cheng et al.,
2024), here, we provide a model that can accurately detect standing
deadwood from drone images with resolutions of a few centimeters to
coarse representations as obtained from national airplane campaigns.

To demonstrate the model’s transferability to any orthophoto and any
forest biome, we applied it to the entire orthophoto collection of
deadtrees.earth. The resulting predictions are available and can be
visualized as a vector layer on the website. A subset of the predictions
is shown in Fig. 6 for high resolution imagery (<5 cm) and in Fig. 7 for
lower resolution imagery (10 cm), illustrating that the model robustly
handles diverse forest ecosystems, image resolutions, as well as partial
and full dieback.

Considering the multi-resolution approach, the coverage across
biomes and the multidimensional sampling scheme, computational
complexity emerged as one of the biggest challenges. While the base
imagery occupied 301 GiB of storage, the rescaled and tiled dataset
occupied 943 GiB. Both tiles and the original images were compressed
optimally with the DEFLATE algorithm. Given these constraints, we
report results only for a SegFormer-based model and did not sys-
tematically benchmark alternative architectures or perform extensive
hyperparameter optimization. Nevertheless, other state-of-the-art seg-
mentation methods may prove promising in this context, including U-
Net variants, DeepLabv3, HRNet (Ronneberger et al., 2015; Chen et al.,
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2017; Wang et al., 2021). To facilitate such comparisons, we release
the machine-learning-ready dataset, and we expect our SegFormer-
based model to serve as a suitable baseline for future evaluations. We
anticipate that community efforts leveraging this dataset will refine
architectures and training regimes and further enhance monitoring of
standing deadwood across biomes, resolutions, and forest types.

6. Conclusion & outlook

We trained and evaluated a deep learning-based pattern recog-
nition model with a dataset covering all forest biomes and image
resolutions from 1 cm to 28 cm to segment dead tree crowns as well
as partial canopy dieback. We observed variations in segmentation
performance between biomes and determined the optimal resolution
for specific biomes. Given that our dataset is severely skewed in several
dimensions, we implemented a four-dimensional sampling scheme to
facilitate the development of a generalizing model. Our model’s high
quality and generalization ability were highlighted, as we observed
qualitatively that the model output often segments standing deadwood
more accurately than the crowd-sourced labels that the model was
trained on. In the future, encoding additional metadata, such as biome,
forest type, and resolution information, into the model encoder ap-
pears promising, as previous studies have demonstrated that integrating
auxiliary information via a multi-modal approach can improve model
performance (Heidarianbaei et al., 2024). Future model improvements
will also build on the constantly increasing data availability of aerial
imagery and corresponding labels at .

To the best of our knowledge, this is the first study to develop a
method for mapping standing deadwood that is not limited to a specific
biome or imagery resolution and can be applied across diverse forest
ecosystems globally. For example, the model developed in this study
can be directly used to assess the coverage of standing deadwood in any
publicly available orthophotos, with resolutions finer than 30 cm, en-
abling large-scale monitoring of the standing deadwood across different
landscapes. Further, we generated labels for the entire deadtrees.earth
orthophoto database (Mosig et al., 2024) which now yields a globally
accurate reference dataset of tree mortality. This could then be used
as training data for satellite-based machine-learning models (Schiefer
et al.,, 2023) or to evaluate existing products (Hansen et al., 2013;
Senf et al., 2018). Our semantic segmentation model is tailored to
aerial imagery with only RGB channels, as it is freely available from
national aerial surveys or consumer-level drones. With these simple re-
quirements based on the data presented in the segmentation approach,
the corresponding straightforward applicability and scalability may be
key to contributing to our understanding of tree mortality dynamics at
global scales.
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Appendix

A.1. Biome aggregation

All original biomes by Olson et al. (2001) were aggregated in four
distinct biome groups:

» Boreal and Montane: ‘Boreal Forests/Taiga’ and ‘Montane Grass-
lands and Shrublands Tundra’

» Drylands: ‘Mediterranean Forests, Woodlands, and Scrub’,
‘Deserts and Xeric Shrublands’, and ‘Flooded Grasslands and
Savannas’

» Temperate: ‘Temperate Broadleaf and Mixed Forests’, ‘Temperate
Coniferous Forests’, and ‘Temperate Grasslands, Savannas, and
Shrublands’
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* (Sub) Tropical: ‘Tropical and Subtropical Moist Broadleaf
Forests’, ‘Tropical and Subtropical Dry Broadleaf Forests’, ‘Tropi-
cal and Subtropical Coniferous Forests’, ‘Tropical and Subtropical
Grasslands, Savannas, and Shrublands’, and ‘Mangroves’

A.2. Acquisition date

For non-tropical regions, all orthophotos were captured during the
leaf-on season of the respective biome, meaning all leafless branches
and trees are standing deadwood. In tropical regions, the dataset con-
tains orthophotos throughout the entire year, as there is no reliable
phenological dataset that can be naively applied as a filter. While this
means that not all leafless trees are standing deadwood, it is irrelevant
to the successful training of a segmentation model.

Data availability

The entire dataset of manual labels and aerial imagery that were
used in this study are available as orthophoto and tiled dataset on
https://deadtrees.earth/.
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