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Abstract Ocean biogeochemical (BGC) models are key tools for investigating ocean biogeochemistry and
the global carbon cycle. These models contain many uncertain and often poorly known process parameters that
are treated as constant values. This study addresses this limitation by estimating spatially and temporally
varying parameters in the Regulated Ecosystem Model 2 (REcoM2) through the assimilation of satellite-derived
chlorophyll-a data using an ensemble Kalman filter. Nine key BGC parameters were optimized, significantly
improving the model's performance. Utilizing the optimized parameters in the model results in a 26% reduction
in root mean square error for surface chlorophyll-a concentrations compared to simulations with uniform
parameters, with the spatial patterns of parameter estimates aligning well with observed distributions. These
findings underscore the benefits of incorporating spatially and temporally varying parameters for enhancing
model accuracy and understanding BGC variability.

Plain Language Summary Ocean biogeochemical (BGC) models are key tools for studying the
global carbon cycle and BGC processes. These models often rely on uncertain parameters that are not precisely
known, thus reducing the accuracy of simulations. Usually, these parameters are kept constant in time and space
in the models, but in reality, they can vary over time and across different ocean regions. In this study, we
combined satellite data with an ocean BGC model called Regulated Ecosystem Model 2, to estimate more
realistic spatially and temporally varying parameter values. To do this, we applied a technique called data
assimilation, which objectively searches for the best values for the uncertain parameters by optimally combining
the simulated output and observational data. The updated model scheme reduced errors in surface chlorophyll-a
concentration predictions by 26%, making it more aligned with observations and increasing confidence in its use
for understanding ocean biogeochemistry and the carbon cycle.

1. Introduction

Ocean biogeochemical (BGC) models are powerful tools for studying ocean BGC processes and understanding
their role in the global carbon cycle. BGC models are an essential component of Earth system models used to
compute climate projections (Orr et al., 2017). They play a central role in quantifying the patterns and rates of
ocean anthropogenic CO, uptake (see Crisp et al., 2022) and in estimating the global carbon budget (see Hauck
et al., 2020). The latter is important because the global ocean absorbs more than a quarter of the anthropogenic
emissions of CO, (Friedlingstein et al., 2022). Toward this direction, ocean BGC models are pivotal for (a)
characterizing future ocean CO, uptake and its sensitivity to climate change under different policy scenarios (see
Crisp et al., 2022), (b) assessing the predictability of global-scale atmosphere-ocean CO, flux relevant to carbon
policy and management (Ilyina et al., 2021), and (c) investigating potential CO, removal (see Gattuso
et al., 2018), ranging from the efficacy of net CO, uptake to the permanence of carbon storage, method verifi-
cation, or carbon accounting, scalability, and environmental impacts in a local, regional, and global scale (Na-
tional Academies of Sciences, Engineering and Medicine, 2022).

Beyond their role in global carbon cycle research, BGC models are used to investigate ocean deoxygenation (e.g.,
Andrews et al., 2017; Bopp et al., 2017) and ocean acidification (e.g., Gehlen et al., 2007; Ilyina et al., 2009;
Krumhardt et al., 2019), and to study compound events with overlapping extremes of acidification, marine heat
waves, and deoxygenation (e.g., Gruber et al., 2021; Hauri et al., 2021). These models also assess the economic
impact of climate change on fisheries (e.g., Loukos et al., 2003) and project changes in fish catch potential (e.g.,
Cheung et al., 2010; Lam et al., 2016). BGC models are further used to develop marine environmental

MAMNUN ET AL.

1 of 25


https://orcid.org/0000-0002-6650-8857
https://orcid.org/0000-0003-3032-114X
https://orcid.org/0000-0001-8292-8352
https://orcid.org/0000-0002-1908-1010
mailto:nabir.mamnun@awi.de
mailto:n.mamnun@imperial.ac.uk
https://doi.org/10.1029/2025JC022752
https://doi.org/10.1029/2025JC022752
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2025JC022752&domain=pdf&date_stamp=2025-11-24

NI

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Oceans 10.1029/2025JC022752

applications and services (e.g., Gutknecht et al., 2019; Jones et al., 2016) and to generate reanalysis data sets (e.g.,
Carroll et al., 2020; Ciavatta et al., 2016).

Ocean BGC models describe the transformations of BGC constituents by ecosystem growth and interactions,
incorporating the spatial distributions of various elements they represent. BGC constituents include nutrients,
functional plankton groups, nonliving organic matter, dissolved gases, and variables of the inorganic carbon
system contained in seawater. Whether by choice or necessity, each BGC transformation in the model is described
by a simplified process formulation known as parameterizations. These parameterizations require process pa-
rameters to make the equations complete and solvable. Ocean BGC models include various biophysical processes
and therefore involve numerous process parameters (see Fennel et al., 2022). The uncertainty of these parameter
values is quite large (see Schartau et al., 2017), leading to possibly significant uncertainty in the model outputs
(Leles et al., 2018; Mamnun et al., 2023; Prieur et al., 2019).

Ocean BGC models describe the diversity of numerous plankton species by a limited number of functional types.
The available reference parameter values related to the parameterizations describing the dynamics of these
functional types are usually taken from laboratory experiments targeting single species, while in the model, they
are applied broadly to describe whole classes of organisms. The values of the parameters depend on the physical
and BGC context (see Follows et al., 2007), which influences the distribution of ecosystem species and the
acclimation of individual species. Thus, in reality, the parameter values vary spatially and temporally, while in
practice, they are used as constants across space and time in the model simulations.

In this context, data assimilation (DA) helps in estimating the uncertain values for BGC parameters. DA combines
the model variables with related observational data in a quantitative way, achieving an optimal match between
simulation output and observations while accounting for their uncertainty. This process also leverages correla-
tions between model parameters and observed variables to estimate optimal parameter values.

DA requires evaluating the model multiple times—variational methods necessitate multiple iterations to mini-
mize the cost function and achieve an optimal fit between the model and observations, while sequential methods
require an ensemble of model runs to capture model uncertainties. Due to the high computational expense of
running a data assimilative model multiple times over a large three-dimensional (3-D) domain, parameter opti-
mization is often carried out in one-dimensional (1-D) BGC model configurations. Parameter values estimated
from a 1-D assimilative application are then used in a 3-D implementation (e.g., McDonald et al., 2012; Oschlies
& Schartau, 2005; St-Laurent et al., 2017).

Studies estimating BGC parameters in multiple locations (e.g., Friedrichs et al., 2007; Gharamti et al., 2017;
Mamnun et al., 2022; Schartau & Oschlies, 2003; Tjiputra et al., 2007) found different estimated parameter values
(EPVs) across locations, reflecting that BGC parameters vary spatially depending on the real-world physical and
BGC context. Treating these parameters as uniform across space and time in simulations, as is commonly done,
likely introduces significant uncertainties and reduces the accuracy of the model results. As such, spatially
varying parameters can likely improve the model performance and realism. However, it is important to note that
significant spatial variations in parameter values partly come from the simple representation of plankton diversity
in these models (T. R. Anderson, 2005; Friedrichs et al., 2007). Using a small number of functional groups to
represent diverse microbial communities in globally different biomes naturally results in greater spatial variability
of parameter values. More complex models with more plankton functional groups might show smaller spatial
variations in parameter values, but increasing the number of parameters can lead to more uncertainty (weak
identifiability) unless observational data are sufficiently dense to constrain reliable estimation (Turner &
Gardner, 2015; Ward et al., 2012).

BGC parameter estimation using 2-D and 3-D models reveals considerable spatial variation in the EPVs (Doron
et al., 2013; Losa et al., 2004; Simon et al., 2015; Singh et al., 2022; Tjiputra et al., 2007; Xu et al., 2022). Losa
et al. (2004) estimated six BGC parameters in an array of simple box models in the North Atlantic Ocean and
obtained varying parameters in different cells. Tjiputra et al. (2007) estimated spatially varying BGC parameters
using an adjoint method by assimilating satellite chlorophyll-a concentration. They found that using estimated
spatially variable parameters improved the global simulation of net primary production (NPP). Doron et al. (2013)
estimated five spatially varying BGC parameters by assimilating ocean color-derived chlorophyll-a data into a
3-D regional model. They found better model-data agreement using spatially varying estimated parameters than
the reference simulation using uniform ones. Estimating four spatially varying BGC parameters, Simon
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etal. (2015) found regional patterns of estimated parameters similar to the Longhurst provinces (Longhurst, 2007)
in the regions where the model used performs reasonably. They demonstrated that BGC predictions generally
benefit from spatially varying parameter estimates. Xu et al. (2022) estimated spatially varying BGC parameters
in the Bohai, Yellow, and East China Seas, assimilating satellite chlorophyll-a data using an adjoint method and
obtaining reasonable parameter values. Using an idealized twin (identical twin) experiment, Singh et al. (2022)
showed that estimating spatially varying ocean BGC parameters is feasible using ensemble-based DA techniques
in global-scale models.

Incorporating temporally varying parameters can significantly improve the agreement between models and ob-
servations (e.g., Mattern et al., 2013, 2014; Roy et al., 2012; Simon et al., 2015). Simon et al. (2015) specifically
identified seasonal patterns in the estimated parameters and advocated using time-dependent parameters in ocean
BGC models. However, they also highlighted that in regions with substantial model errors, the parameter values
either converge to extreme values, resulting in larger model errors, or may diverge toward a high ensemble spread.
Singh et al. (2022) also noted that even in an ideal model setting, certain BGC parameters do not converge to their
true values when significant model errors occur.

The high parameter uncertainty of BGC models, combined with sparse and error-prone BGC observations, poses
significant challenges in establishing relationships among BGC parameters, model state variables, and obser-
vations. In a high-dimensional BGC model, the number of unknown state variables and parameters of the model
exceeds the available observations, creating an underdetermined inverse problem that the DA seeks to solve using
a small number of observations to estimate a large set of unknowns. Despite the benefits of using satellite-derived
surface observations for BGC state estimations (e.g., Ford & Barciela, 2017; Goodliff et al., 2019; Gregg, 2008;
Nerger & Gregg, 2007, 2008; Pradhan et al., 2019, 2020), it remains unclear how effectively they can constrain
uncertain BGC parameters in a 3-D global ocean model and estimate their spatially varying values. Additionally,
the response of the joint state-parameter estimation (JSPE) algorithm to highly nonlinear relationships and non-
Gaussian error statistics, such as those found in ocean BGC models, is poorly understood.

The objective of this study is to estimate selected spatially and temporally varying parameters in a global ocean
BGC model by assimilating chlorophyll-a concentration retrieved from satellite ocean color measurements and to
study the effect of spatially varying parameters on BGC processes and modeling. We estimate nine spatially and
temporally varying parameters, chosen based on a global sensitivity analysis (Mamnun et al., 2023), of the BGC
model Regulated Ecosystem Model Version 2 (REcoM2, Hauck et al., 2013; Schourup-Kristensen et al., 2014).
We further assess the skill of REcoM2 in a simulation using the estimated spatially and temporally varying
parameters. We discuss the effect of estimated spatially and temporally varying parameters on BGC processes and
modeling.

2. Materials and Methods
2.1. The Coupled Physical-Biogeochemical Model

In this study, we used the coupled physical-biogeochemical model consisting of the Massachusetts Institute of
Technology general circulation model (MITgecm, Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997) to
simulate the ocean dynamics and tracer transports and the REcoM2 (Hauck et al., 2013; Schourup-Kristensen
et al., 2014) simulating the BGC processes.

MITgem is a 3-D, finite-volume, general circulation model. It solves the time-dependent, Boussinesq-
approximated Navier-Stokes equations with or without hydrostatic approximation and conservation equations
for mass and energy. The nonhydrostatic capabilities allow the users to use the model to study small-scale and
global processes. A sea ice model (Losch et al., 2010) is integrated with MITgcm.

REcoM2 describes two phytoplankton groups—nanophytoplankton and diatoms—and a generic heterotrophic
zooplankton class. The nanophytoplankton has an implicit representation of calcifiers. REcoM?2 further has one
class of organic sinking particles whose sinking speed increases with depth. REcoM2 describes the carbon cycle;
the nutrients nitrogen, silicon and iron; and chlorophyll. REcoM2 is a so-called quota model (Droop, 1983). As
such, the intracellular stoichiometry of carbon, nitrogen, and chlorophyll (C: N: Chl) pools for nano-
phytoplankton and carbon, nitrogen, silicate, and chlorophyll (C: N: Si: Chl) pools for diatoms are allowed to
respond dynamically to the environmental conditions following Geider et al. (1998) and Hohn (2009) for the Si
quota. The intracellular iron pool is a function of the intracellular nitrogen concentration (fixed iron to nitrogen
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ratio), as iron is physiologically mainly linked to nitrogen metabolism and the photosynthetic electron transport
chain (Behrenfeld & Milligan, 2013; Geider & La Roche, 1994). Dead organic matter is transferred to detritus by
aggregation and grazing by the zooplankton group, and the sinking and advection of detritus are represented
explicitly. REcoM2 has two external iron sources: atmospheric dust deposition and sedimentary input. The iron
cycle in the model is driven by biological uptake, remineralization, and scavenging onto biogenic and lithogenic
particles.

2.2. Model Setup

This study employs a global model configuration of the so-called Lat-Lon-Cap 90 grid (LLC90, Forget
etal., 2015). It represents the Earth in a Cartesian curvilinear coordinate system using a cubed-sphere structure in
the Northern Hemisphere and a dipolar grid arrangement in the Southern Hemisphere.

The horizontal model grid resolution varies spatially, ranging from 22 to 110 km, with the highest resolutions at
high latitudes and the lowest resolution at midlatitudes. There are 50 vertical levels. The vertical grid spacing
increases with depth from 10 m at the surface layer to 456.5 m at the bottom layer.

We initialized the temperature, salinity, and dissolved oxygen (DO,) fields using the winter mean data from the
World Ocean Atlas 2018 (WOA-18, Boyer et al., 2018). For the dissolved inorganic nitrogen and silica (DSi)
fields, we used annual climatology from WOA-18 (Garcia et al., 2019). The total alkalinity (ALK) and the
dissolved inorganic carbon fields were initialized with mapped climatological data from the GLobal Ocean Data
Analysis Project (GLODAPv2, Lauvset et al., 2016). To initialize the dissolved iron (DFe) field, we relied on
concentrations obtained from a previous Pelagic Interactions Scheme for Carbon and Ecosystem Studies
(PISCES, Aumont et al., 2015) model run by Aumont et al. (2015). We used the monthly dust deposition field
from the present-day simulation of Albani et al. (2014) to compute DFe input flux from the atmosphere, assuming
3.5% iron content in dust particles and 2% iron solubility. All other passive tracers were initialized with small
arbitrary values.

We utilized the interannually varying atmospheric forcing (2 m air temperature, specific humidity, downward
radiation, and 10 m wind and precipitation) from the 6-hourly ERA-Interim reanalysis fields (Dee et al., 2011)
from 1992 to 2018 and from ERA-5 hourly reanalysis fields (Hersbach et al., 2020) for 2019 to 2021. For
consistency, hourly ERA-5 data were interpolated to 6-hourly data. Freshwater runoff is forced using the river and
ice-sheet melting runoff data from the JRAS55-do data set (Tsujino et al., 2018).

2.3. Data Assimilation Methods

We employ an ensemble-based Kalman Filter (EnKF, see review by Vetra-Carvalho et al., 2018). EnKFs utilize
an ensemble of model state realizations to represent the state estimate and to account for model uncertainties and
covariances between different variables contained in the so-called state vector. We implemented the ensemble
DA with the Parallel Data Assimilation Framework (PDAF, Nerger & Hiller, 2013), an open-source software
(accessible at http://pdaf.awi.de; Nerger, 2023). PDAF offers comprehensive and parallelized ensemble filter
algorithms and support for parallel ensemble integrations. It can be coupled into an existing model code as a
library. PDAF currently provides not only many variants of EnKFs but also particle filters and variational
methods.

2.3.1. Error Subspace Transform Kalman Filter

We used the localized (Nerger et al., 2012a) error subspace transform Kalman filter (ESTKF, Nerger et al., 2012b)
for all of our DA experiments in this study. The ESTKF is a highly efficient filter for high-dimensional models. As
an ensemble square root filter, the ESTKF computes the weights for the ensemble transformation directly in the
error subspace represented by the ensemble and can be used with a deterministic minimum transformation,
allowing the use of small ensembles.

Domain localization (Nerger et al., 2012a) with observation weighting is used in this study. In the domain
localization approach, each vertical column of the model grid is considered a disjoint local domain. Only ob-
servations with a distance smaller than a cutoff radius are used in the analysis step for a given local domain. The
weight of the observations is decreased with increasing distance. The localization radius was tested with different
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Table 1
The Nine Selected BGC Parameters With Their Symbol, Unit, and Default Value

Parameter Symbol Unit Default value

1 Nanophytoplankton initial slope of the photosynthesis-irradiance curve ANano mmol C (mg Chl)™' (Wm_zd)_l“ 0.14
2 Diatom initial slope of the Photosynthesis-irradiance curve Apia mmol C(mg Chl)’l (Wm’zd)_l 0.19
3 Nanophytoplankton maximum photosynthesis rate Hyan d! 3.00
4 Diatom maximum photosynthesis rate HDe d! 3.50
5 Maximum chlorophyll to nitrogen ratio of nanophytoplankton G mg Chl (mmol N)™! 3.15
6 Maximum chlorophyll to nitrogen ratio of diatom gShi:Nmax mg Chl (mmol N)™! 4.2
7 Nanophytoplankton chlorophyll degradation rate d;f/me a! 0.10
8 Diatom chlorophyll degradation rate asn da-! 0.10
9 Maximum grazing rate of zooplankton '3 mmol N m=3 d! 24

“The unit indicates millimoles of carbon produced per milligram of chlorophyll, adjusted for the amount of light energy received daily per square meter.

values and set to 5 grid cells based on trial and error to improve the assimilation results. No ensemble inflation is
used in this study.

2.3.2. Ensemble Generation

We apply perturbations to nine BGC process parameters of the REcoM2 model to generate an ensemble of BGC
model states. Our goal is to minimize the uncertainty associated with the initial parameter values through sto-
chastic estimation using satellite-derived surface chlorophyll-a concentration data. Accordingly, we targeted the
perturbation to parameters showing high sensitivity to the model outputs of surface chlorophyll-a concentration.
The selection of these nine parameters was based on the sensitivity analysis conducted by Mamnun et al. (2023).

Among the nine selected parameters, there are four phytoplankton photosynthesis-irradiance parameters
(H. A. Bouman et al., 2018), two cell quotas—the maximum chlorophyll to nitrogen ratios, two parameters for
chlorophyll degradation, and one parameter related to zooplankton grazing. Table 1 lists the selected parameters,
including their symbols, units, and default values, which are the values used by Hauck et al. (2013).

We utilized a lognormal distribution function to generate random perturbations for each of the selected param-
eters. The respective default values of the parameters were considered the expected value of the distribution, with
a standard deviation of 25% of the default value. These perturbations induce subtle differences in the BGC
processes across different ensemble members, consequently generating a diverse range of model outcomes. We
defined each selected parameter as a two-dimensional (2-D) field within the model and established that each
ensemble member has a different set of parameter values. In each ensemble member, the initial values of these
parameters were identical across all 2-D grid points. Running these models generates an ensemble of simulations
with spread in the BGC fields, allowing us to observe the variability in outcomes induced by the perturbations.

2.3.3. The (Augmented) State Vectors

From the BGC model, we included eight model state variables that describe the two phytoplankton groups in the
state vector of variables that are directly updated by the filter method. The selected state variables are as follows:

. Nanophytoplankton biomass content of carbon

. Diatom biomass content of carbon

. Nanophytoplankton biomass content of nitrogen

. Diatom biomass content of nitrogen

. Nanophytoplankton calcium carbonate concentration
. Biogenic silica concentration of diatoms

. Nanophytoplankton chlorophyll-a concentration

0 NN LB W

. Diatom chlorophyll-a concentration
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The assimilated observation type is the total surface chlorophyll-a concentration. Since the chlorophyll is rep-
resented in the model by two group-specific concentrations, we include a variable “total chlorophyll-a concen-
tration” in the state vector by summing up the chlorophyll-a concentration of nanophytoplankton and diatoms.
The observation operator for this variable, total chlorophyll-a concentration, selects corresponding values from
the state vector. Subsequently, the ESTKF updates the model state variables and the parameters through cross-
covariances with the total chlorophyll-a concentration.

We applied the state augmentation approach (J. L. Anderson, 2001), which merges state variables and parameters
into an augmented state vector, treating the parameters as time-varying variables. This augmented state vector
method facilitates the estimation of parameters, given the observation of specific variables and the multivariate
covariances between model parameters and model variables. The analysis increments were computed within each
5-day assimilation window, corresponding to the temporal resolution of the assimilated observations (see Sec-
tion 2.4). The model state and parameters were then instantaneously updated at the corresponding model time step
by directly applying the increments, without imposing any bounds or prior limits on their values.

EnKFs are only optimal if the errors have a Gaussian distribution. This is not fulfilled in an ocean BGC model due
to non-Gaussian state distributions of concentration variables. To address this limitation, we transformed the
chlorophyll-a concentrations, both from the model and observations, into a logarithmic scale, based on the
assumption that their distribution is lognormal (Campbell, 1995). This logarithmic transformation was applied
also to the other BGC state variables in the state vector, assuming a similar probability distribution as the
chlorophyll-a concentration. Moreover, since the parameters were perturbed following a lognormal distribution,
we also log-transformed their values before each assimilation cycle for analysis.

An advantage of the log-transformation approach is that it prevents estimating unrealistic negative concentrations
or parameters during the assimilation process, which could otherwise arise due to the Kalman filter's linear
combination of model estimates and observations in combination with the Gaussian assumption. By employing
this technique, we ensure that the assimilation maintains the integrity of BGC variables and parameters as positive
quantities, aligning with their inherent natural constraints.

2.4. Observational Data

The assimilated observations are remotely sensed surface chlorophyll-a concentrations obtained from the Eu-
ropean Space Agency's Ocean Colour Climate Change Initiative (OC-CCI; Sathyendranath et al., 2019) project
product, Version 6.0 (last access 03 March 2023). This product was created by merging satellite data from
multiple sensors. The assimilated data set consists of a 5-day mean level 3 binned data presented on a global
sinusoidal grid with a resolution of 4 km.

The data set includes per-pixel error statistics estimated by analyzing matchups between in situ data and ocean
color. We used these error statistics as observation uncertainty in the DA analysis. Specifically, we computed and
assimilated unbiased values of chlorophyll-a concentration interpolated on the model grid analogous to Pradhan
et al. (2019).

2.5. Experiments
We performed four experiments. The experiments are as follows.

1. Reference single forward run (REF_FOR): We conducted a single 30-year model run from 1992 to 2021, using
the initial conditions specified in Section 2.2 and the default parameter values (DPVs) in Table 1. This
simulation served as the basis for initializing the ensemble reference simulations.

2. Reference 40-member ensemble free run (REF_FRE): We performed a 40-member ensemble simulation
spanning three years from 2018 to 2020. The ensemble models were initialized using the restart files from
REF_FOR. For each ensemble state, perturbations to the DPVs of the nine selected parameters were applied.
The hydrodynamic model states were kept unchanged.

3. Joint state-parameter estimation (JSPE): We conducted a joint BGC state and parameter estimation experiment
by assimilating satellite-derived chlorophyll-a concentration data using a 40-member ensemble. In this
experiment, we augmented the state vector by 2-D fields of the selected BGC parameters and updated them in
each assimilation cycle together with the state variables. The initial model states were identical to the initial
states of REF_FRE. The year 2018 was considered a spin-up without applying DA. In the next year (2019),
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only state estimation was performed to minimize the model uncertainties sourced from other than parameter
perturbations. Subsequently, the BGC state variables and parameters were updated simultaneously by the DA
in 2020.

4. Adjusted simulation (ADJ_FOR): We run a single forward model with the EPVs resulting from the experiment
JSPE. This is a single 30-year model run identical to the experiment REF_FOR but using the estimated
spatially varying parameter values.

3. Results
3.1. Impact of the Joint State-Parameter Estimation on the State Variables

For accurate parameter estimation, it is essential that the assimilation effectively constrains the model states. The
value of the model state variables, especially at the surface, can significantly impact near-surface BGC processes
in the model. In this study, all assimilation experiments improved the simulation of surface chlorophyll-a con-
centration compared to the free run (REF_FOR), as measured by root mean square errors (RMSE) of the log-
transformed model state relative to the assimilated observations. Specifically, the JSPE reduced the RMSE be-
tween observations and model output by 51% in log space, compared to the RMSE from the REF_FOR.

Figure 1 shows the area-weighted RMSE for log-transformed surface chlorophyll-a for the experiments
REF_FOR and JSPE when compared to satellite observations. During spring in both hemispheres, the model
tends to overestimate surface chlorophyll-a concentrations. This overestimation contributes to elevated RMSEs
from March to May and September to November on a global scale (Figure 1a). Pradhan et al. (2019) observed a
similar temporal evolution of RMSEs using the same model with a coarser grid resolution. The model
(REF_FOR) is more skillful in the equatorial region (Figure 1b) than the higher latitudes. The joint parameter-
state estimation was more effective in the midlatitudes than in the low and high latitudes (Figures 1c and 1d).
However, RMSEs are higher at high latitudes during the spring in each respective hemisphere for both the free-
run model and the JSPE (Figures le and 1f). This is most likely because of the low number of observations
available in these regions. Although JSPE significantly reduces RMSEs during the northern spring bloom, re-
sidual errors remain substantial.

We evaluated the spatial distributions of the logarithm of mean surface chlorophyll-a concentration for April and
September 2020 (Figure 2). We have chosen these 2 months because the global area-weighted RMSEs are higher
than in the other months. We compare the ensemble mean of surface chlorophyll-a concentration simulated
without DA (REF_FRE) and with DA (Analysis of JSPE) to observations. REF_FRE performed poorly with high
positive bias in high latitudes. The JSPE experiment shows a better field with spatial patterns closer to the ob-
servations than the REF_FRE. The model still overestimates the chlorophyll-a concentration compared to the
observations, particularly in September. However, the model underestimates the observed values in the sub-
tropical South Pacific Ocean.

3.2. Estimated Parameter Values

In this section, we examine the spatial variability of the estimated BGC model process parameters. The DA
estimates the parameters using their correlation with the total chlorophyll-a field. The enhanced performance of
the DA simulation compared to the free run for state estimation (Section 3.1) is partly due to the simultaneous
optimization of the model parameters. Figure 3 shows EPVs in the global ocean for the nine selected parameters at
the end of the year 2020 after 1 year of JSPE. The global average, minimum, maximum, and standard deviation of
spatially varying estimated parameters are summarized in Table 2. The values of the parameters vary regionally
depending on the physical and BGC conditions. All nine estimated parameters exhibit values larger and smaller
than their default value, showing that DA optimizes the model's parameterization regionally by utilizing the
correlation to the observations. In the following subsection, we assess the effect of the parameter estimation
separately for groups of related parameters.

3.2.1. Initial Slope of the Photosynthesis-Irradiance (P-I) Curve of Nanophytoplankton (ay,,,) and
Diatoms (ap;,)

The initial slope of the P-I curve (@) expresses the efficiency with which an organism conducts photosynthesis
under light-limited conditions by characterizing the relationship between photosynthetic rate and light intensity
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Figure 1. Comparison of area-weighted root mean square errors of log-transformed surface chlorophyll-a concentration of the experiments REF_FRE and joint state-
parameter estimation relative to the OC-CCI data (a) for all available observations (global), (b) from the 10°S—10°N latitude (low latitude), (c) 10°N-50°N—(midlatitude
north), (d) 10°S=50°S (midlatitude south), (e) north of 50°N (high latitude north), and (f) south of 50°S (high latitude south).

(Denman, 2003). The estimated values of ay,,, and ap,, are larger than their default values in most parts of the
globe (Figures 3a and 3d). Accordingly, the global averages of both parameters increase (Table 2). A higher value
of a indicates that a lower chlorophyll-a concentration is sufficient to achieve an equivalent primary production
under light-limited conditions. Consequently, the model predicts adequate phytoplankton production with
reduced chlorophyll-a during winter when light is limited. However, to compensate for the negative model bias in
the subtropical South Pacific Ocean, the assimilation increased the values of ay,,, even though the light is not
limited here. In contrast, ap,, was only slightly increased in this region. Perhaps, diatom growth is limited here
due to iron limitation and thus not sensitive in this region. The Barents Sea is another region where the values of
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Figure 2. Monthly mean log-transformed surface chlorophyll-a concentrations for April 2020 (a—c) and September 2020 (d—
f). From left to right: (REF_FRE); ESA OC-CCI data; and joint state-parameter estimation (JSPE) analysis results and
difference of JSPE analysis results from REF_FRE.

both ay,,, and ap,, are increased. This compensates for the underestimation of chlorophyll-a in REF_FRE
(Figure 2). In the subantarctic zone of the Antarctic Circumpolar Current, the values of ay,,, decrease while the
values of
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Figure 3. Estimated parameters values for the initial slope of the photosynthesis-irradiance curve of nanophytoplankton
(a) and diatoms (d), maximum photosynthesis rate of nanophytoplankton (b) and diatoms (e), maximum chlorophyll to
nitrogen ratio of nanophytoplankton (c) and diatoms (f), chlorophyll degradation rate of nanophytoplankton (g) and diatoms
(h), and maximum grazing rate (i). The default value is indicated by the bold value indicated by the major tick mark on the
color bar.
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Table 2
The Default Value and Estimated Values (Global Average, Minimum, Maximum, and Standard Deviation as a Percentage
Relative to Global Average) of Spatially Varying Estimated Parameters

Parameter  Default value  Average of estimate  Estimate minimum  Estimate maximum  Standard deviation

1 ayao 0.14 0.23 0.009 24 0.17 (73%)
2 ap 0.19 0.26 0.01 15 0.19 (73%)
30 3.00 2.67 0.38 17.72 1.14 (43%)
4 pp= 3.50 420 0.20 29.84 2.06 (49%)
5 giNmax 3.15 3.02 0.4 7.87 0.74 (24%)
6 guNmax 42 3.32 0.23 40.43 131 31%)
7 4G 0.10 0.107 0.001 0.98 0.055 (51%)
8 g 0.10 0.1007 0.001 0.43 0.04 (40%)
9 ¢ 2.4 3.18 0.12 20.34 0.24 (62%)

increase. This induces a shift from nanophytoplankton to diatoms. In the coastal areas, the values of ay,,, in-
crease in general, whereas the values ap,, show no clear pattern of changes in coastal areas. Overall, the patterns
of the changes in the parameter values are different for ay,,, and ap;,.

Compared to observations (e.g., H. A. Bouman et al., 2018; Marafién & Holligan, 1999), the estimated values of
nano are higher than the maximum observed values in the subtropical South Pacific gyre, the South Atlantic, and
the Barents Sea. The values of ap;, show no such extreme values. Elevated values of ap,, are observed in the iron-
limited South Pacific Ocean and the Barents Sea, though.

3.2.2. Maximum Photosynthesis Rate of Nanophytoplankton (xy:" ) and Diatoms (up2*

ano

The maximum photosynthesis rate of phytoplankton (™) defines the peak rate at which phytoplankton can
transform inorganic carbon into organic matter through photosynthesis under optimal light and nutrient condi-

tions (Denman, 2003). Unlike ay,,, and ap,,, the parameter estimation changes the values of uy

opposite directions—the global average of py2:  decreases from its default value, whereas that of u}i increases

and ppi* in

max
Nano

and 2 show opposite signs (Figures 3b

(Table 2). Similarly, the spatial patterns of the estimated values of y
and 3e). Both nanophytoplankton and diatoms compete for similar resources, such as light and nutrients. The
model has a competition term between nanophytoplankton and diatoms for a shared resource (Hauck et al., 2013),
which might lead to an inverse relationship between their maximum photosynthesis rates to ensemble dynamics,
where adjustments in these two parameters compensate each other. In general, the values of y
the model strongly underestimates the chlorophyll-a, for example, the Arctic Atlantic Ocean and the subarctic
Atlantic Ocean. In these regions, diatom productivity is inherently low, limiting the effectiveness of increasing

Upax at correcting model biases.

max

N, increase where

3.2.3. The Maximum Chlorophyll to Nitrogen Ratio in Nanophytoplankton (g$-Y m2X) and

Nano
Diatoms (g§h:V max)

The maximum chlorophyll to nitrogen ratio (¢"**¥ M#) defines the maximum of how much chlorophyll-a can be
synthesized per unit of phytoplankton nitrogen (Geider et al., 1998; Omta et al., 2017). The global spatial average

values of the estimated qﬁZﬁS’ maX and qgf’éw max are lower than their default values (Table 2). A lower value of

g“":Nmax implies that a smaller maximum amount of chlorophyll can be produced by the cell per amount of

Chl:N max Chi:N max

cellular nitrogen under light-limiting conditions. The DA reduces the values of gy’ and g5, over the

large part of the global ocean (Figures 3c and 3f). This compensates for the overall overestimation of the surface

Chl:N max
Nano

increased in the subtropical Pacific Ocean, where the model underestimates the surface chlorophyll-a concen-

trations, whereas the values of g§/*V ™™ are not changed much in this region. The latter is due to the fact that

chlorophyll-a without having a direct influence on nitrogen biomass. In contrast, the values of g are

nanophytoplankton dominates in this region so that changes in diatoms have little effect on the total chlorophyll.

The values 5N ma show locally extreme values in some regions, for example, the Norwegian Sea, the
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Bellinghausen Sea, and the Amundsen Sea. These localized extreme values likely reflect the DA compensating
for strong regional underestimations of chlorophyll-a, especially in areas where diatoms occasionally become
important contributors to total chlorophyll-a in these high-latitude regions.

dChl

Chl
Nano d

3.2.4. Chlorophyll Degradation Rate of Nanophytoplanktons ( ) and Diatoms (d};;,)

The chlorophyll degradation rate (d“*') represents the rate at which chlorophyll is degraded. This affects the
amount of chlorophyll available in phytoplankton, especially under long periods of light limitation or at the base
of the euphotic zone. By reducing the amount of cellular nitrogen, it influences phytoplankton production.
Though the global spatial average values of d,f,fxw and dg’é are close to their default values (Table 2), the regional
values vary spatially by two orders of magnitude (with 51% and 40% standard deviations of the global mean,
respectively). The patterns of spatial variation of these two parameters are similar (Figures 3g and 3h) and

dChl dCh[

directed by the model-data misfit. The particularly low values for both dy,,, and dj;;, in the northern Atlantic are

another compensation for the seasonal underestimation of chlorophyll in this region.

3.2.5. The Maximum Grazing Rate of Zooplankton ()

¢ represents the maximum possible rate at which zooplankton can consume phytoplankton under ideal conditions
—a measure of the grazing pressure zooplankton can exert on phytoplankton populations. The global average
value of ¢ is higher than its default value (Table 2). A higher value of £ can lead to a faster removal of phyto-
plankton from the system, thus decreasing the surface chlorophyll-a concentration, and a lowering of & usually
leads to an increase in the surface chlorophyll-a concentration since more phytoplankton exists. The values of this
parameter increase in a large part of the world's oceans to compensate for the overestimation of surface
chlorophyll-a by the model. The parameter value decreased in the Arctic and subarctic Atlantic ocean, the south
subtropical convergence zone, and some parts of the subantarctic water ring. The estimated £ values vary strongly
with a range from 0.12 to 20.34 mmol N m~3d™!. One possible reason for this extensive range is that we did not
include the grazing efficiency (y), because its effect is correlated to that of £, so that both parameters cannot be
estimated independently. However, y can also be highly sensitive for the simulation of the surface chlorophyll-a
simulation (Mamnun et al., 2023), in the parameter estimation. Thus, a change in £ could compensate for the
constant y.

The JSPE reduces the ensemble spread relative to the initial spread across all parameters (not shown). A spatial
consistency is observed in the retrieved pattern values that align well with the spatial distribution of chlorophyll-a,
though discrepancies persist. Small-scale noise is likely due to spurious correlations in our finite ensemble of 40
members. Regions, where the estimation does not converge, correspond to regions where the model exhibits
deficiencies in simulating surface chlorophyll-a.

3.3. Temporal Evaluation Along the Atlantic Ocean

We monitored the time evolution of the EPVs in 12 Longhurst provinces (Longhurst, 2007) in the Atlantic Ocean
(see Figure 4). Most changes in the parameters occur during the bloom periods. In the low and midlatitudes, most
parameters reach approximately stable values by 30 DA cycles (May) and show minor variability over time. As
expected, the parameters show stronger temporal variability in the high latitudes than in the low and midlatitudes.

The photosynthesis-irradiance parameters ay,,, and ap;, exhibit large temporal variability in the polar provinces
(Figures 4a and 4d), predominantly due to the latitudinal distribution of incident irradiance. In the Northern
Hemisphere, increasing irradiance during spring enhances phytoplankton growth, resulting in elevated simulated
chlorophyll-a concentrations. To correct this overestimation, the parameter estimation reduces the values of ay,,,
and ap,, in the ARCT and SARC provinces. Conversely, during summer, the values of both parameters
continuously increase, surpassing their default values. They remain relatively stable during the low-light con-
ditions from September until the end of the year. In the ANTA and SANT provinces, ay,,, and ap,, remain above
their default values. In midlatitudes and low latitudes, most variations in these parameters occur during the initial
cycles of the parameter estimation process, after which they either stabilize or exhibit a discernible trend. Notably,
nano Undergoes more pronounced changes than ap;, in these midlatitudinal and low-latitudinal provinces. This is
because diatoms are less abundant in these regions than nanophytoplankton, so that the DA has a more pro-
nounced effect on ay,,, in midlatitudes and low latitudes.
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Figure 4. Temporal evaluation of average estimated parameter values across the 12 Longhurst provinces as listed in Table 3. The numbering of the subplots corresponds
to that in Figure 3.
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Table 3
Longhurst Province (Longhurst, 2007) Included in the Analysis
Code Province Code Province
ARCT Atlantic Arctic WTRA Western tropical Atlantic
SARC Atlantic subarctic ETRA Eastern tropical Atlantic
NADR North Atlantic drift SATL South Atlantic gyre
NASE North Atlantic subtropical gyre east SSTC South subtropical convergence
NASW North Atlantic Subtropical gyre west SANT Subantarctic
NATR North Atlantic tropical gyre ANTA Antarctic

max

The opposite signs of the changes in photosynthetic parameters py5,
their temporal evolution (Figures 4a and 4d). Large changes in these parameters occur in ARCT, SARC, and
NADR provinces where the values of py’: continuously increase and the values of ujji* decrease from the
beginning of the parameter estimation process until the spring bloom. Afterward, the values of both parameters
remain nearly constant. In most of the provinces, the values of these parameters converge and no clear temporal

and pp discussed above are also evident in

variabilities are visible.

Chl:N max
Nano

provinces (Figures 4c and 4f). In most provinces, the estimated values are lower than their default levels. The
changes over time are distinct for both parameters, which leads to the distinct spatial patterns shown in Figures 4c
and 4f.

Chl:N max

The ratio parameters g and gp;; exhibit a pronounced temporal variability, especially in the polar

The values of the degradation parameters df,Zﬁw and d,c)% exhibit similar trends over time. In most provinces, both

parameters increase from their default values (Figures 4g and 4h). However, in the ARCT and SARC provinces,

dChl

there is a significant reduction in their values, which is nearly equal for both parameters. Provinces where dy,,,

and dgf‘é are increased also exhibit a temporal variability with particularly elevated values during the spring and

summer and smaller elevations afterward.

The grazing parameter £ undergoes substantial changes during the initial DA cycles. Increased values of £ imply
increased grazing and hence reduced concentrations of phytoplankton biomass and chlorophyll-a. Thus, to
counteract the general overestimation of surface chlorophyll-a concentration in the model, the values of £ increase
in most provinces. Notable exceptions are the ARCT, SARC, SSTC, and SANT provinces in which £ is reduced.
Despite these large updates, no significant seasonal variability is visible.

3.4. Effect of Estimated Parameters on Model Skill

We verify the state accuracy of a single model forward run that use the final parameter's estimates of experiments
JSPE, referred to as ADJ_FOR. We compare the performance against the reference runs.

We first compare the annual average of chlorophyll-a concentrations obtained from both simulations averaged
over the year 2019 with OC-CCI data. The Taylor diagrams (K. E. Taylor, 2001) in Figure 5 show the correlations
and root mean square differences (RMSD). The surface chlorophyll-a concentration simulated by the experiment
ADJ_FOR outperforms the reference run (REF_FOR) with a 26% reduction of RMSD for the annual average of
the surface chlorophyll-a concentrations in 2019. The correlation of ADJ_FOR with OC-CCI data is much higher
with 0.73 than the correlation of 0.52 of REF_FOR.

We further compare the monthly average for April and October in 2019 also with reference to OC-CCI monthly
averaged data to distinguish the spring in the Northern and Southern Hemispheres, respectively. For both months,
stronger reductions of the RMSD and increases of the correlation coefficient are visible in ADJ_FOR than
REF_FOR. Thus, using the estimated parameters improves the model simulation in these months. In the Southern
Hemisphere, although the RMSD decreases substantially, the improvement in the correlation coefficient is
smaller than the Northern Hemisphere. This indicates that while parameter estimation effectively reduces overall
biases in chlorophyll-a concentration, it does not fully capture the spatial variability and dynamics in the Southern
Hemisphere.
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Figure 5. Taylor diagrams for the comparison of surface chlorophyll-a concentration from model simulations with default
parameters and estimated parameters against satellite observations for the period 2019. The diagrams represent (a) global
annual mean, (b) monthly mean for April in the Northern Hemisphere, and (c) monthly mean for September in the Southern
Hemisphere.

Figure 6 illustrates that the simulation with estimated spatially varying parameters (ADJ_FOR) produces spatial
patterns of surface chlorophyll-a concentrations closer to observations than to simulations using uniform default
parameters (REF_FOR). In April (Figures 6d—6f), the spatial variability of the spring bloom in the Northern
Hemisphere is well reproduced by the estimated parameters. Similarly, in October (Figures 6g—61), the spatial
structure of the bloom dynamics in the Southern Ocean is significantly improved; however, notable over-
estimations remain in several regions.

To evaluate an independent variable, we compare here the spatial distributions of the modeled vertically inte-
grated NPP for the runs with default and estimated parameters with estimates based on satellite data. The satellite
data product is computed from the updated carbon-based productivity model (CbPM, Westberry et al., 2008).
CbPM uses spectrally resolved light attenuation based on the semianalytical Garver-Siegel-Maritorena algorithm
(GSM). As visible in Figure 7, the vertically integrated NPP from REF_FOR and ADJ_FOR agree reasonably
with the NPP obtained using the CbPM. Nevertheless, there are regional differences. Large differences are
particularly evident in coastal regions, which could be linked to model parameter estimation deficiencies or high
uncertainty of satellite data-based NPP estimates in coastal water (see Westberry et al., 2008). The GSM algo-
rithm used to estimate NPP in the CbPM product tries to distinguish the optical signatures from phytoplankton,
particles, and dissolved organic matter but still requires regional tuning in coastal regions, where nonbiotic
optically active material makes chlorophyll-a retrieval challenging.
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Figure 6. Surface chlorophyll-a concentration simulated with spatially varying (a, d, and g) and uniform default
biogeochemical parameters (b, e, and h). Annual mean concentrations for 2019 are shown in panels a—c, with (c) representing
observations, while concentrations for April 2019 (d—f) and October 2019 (g—i) highlight seasonal patterns, with F and I
showing observational data.
REF_FOR CbPM AD)_FOR
) OCT 2020 -~ OCT 2020
TS T e P = SIS
>
0 200 400 600 800 1000
mgCm~2day~!
Figure 7. Monthly mean vertically integrated net primary production. The top row (a—c) is for April 2020, and the bottom
(d—f) is for October 2020. The left column (a and d) is the reference simulation of a single model with default parameter
values (REF_FOR), the middle column (b and e) is for satellite-based estimation, and the right column (c and f) is from the
simulation of a single model with estimated parameter values (ADJ_FOR).
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4. Discussion
4.1. Subset of Parameters

In this study, we estimate the spatially varying values of nine parameters on a global scale using ocean color DA.
The number of parameters considered is comparable to other studies (e.g., Gharamti et al., 2017; Kim et al., 2021;
Losa et al., 2004; Mamnun et al., 2022; Singh et al., 2022), which typically ranges from 3 to 15. Utilizing DA to
estimate many BGC parameters may result in low predictive skills due to overfitting to observational noise
(Friedrichs et al., 2007). The efficacy of parameter estimation depends on the sufficiency of available observa-
tions to accurately constrain the chosen parameters (Thacker, 1989). Directly correlating surface chlorophyll-a
with phytoplankton biomass is challenging, given the variability and often ambiguous nature of the chlorophyll-
to-biomass ratio. Even with a known chlorophyll-to-biomass ratio, satellite chlorophyll-a observations pre-
dominantly constrain parameters that are directly sensitive to surface chlorophyll-a. Nevertheless, several state
variables other than surface chlorophyll-a might exhibit high sensitivity to the same parameters (Mamnun
et al., 2023). Consequently, relying solely on satellite chlorophyll-a data for parameter estimation may leave these
variables inadequately constrained. Relying on a single observation type might be insufficient to differentiate
between multiple viable parameter combinations, exemplifying the underdetermination issue frequently
encountered in BGC modeling (Ward et al., 2010).

Analogous to the underdetermination problem, correlations between parameters can hinder the identification of a
single optimal set of parameter values (Fiechter et al., 2011; Mamnun et al., 2022; Mattern et al., 2017). A notable
manifestation of these parameter codependencies is the cancellation of uncertainties. In such cases, the model
may align with available observations, not because each parameter value is optimal but because the uncertainties
in correlated parameters offset each other. Therefore, individual parameter values may not be portable to other
model configurations.

We reduced this underdetermination problem by selecting only nine parameters, excluding parameters that have
been shown to be significantly correlated in a previous sensitivity analysis and a DA study using a 1-D setup of the
model (Mamnun et al., 2023). For the chosen parameter set, it is assumed that other BGC parameters do not
significantly influence the model uncertainty as was demonstrated by the sensitivity analysis by Mamnun
et al. (2023). Nonetheless, the current understanding of BGC parameter uncertainties and their interrelationships
is inadequate for determining an optimal parameter subset. The outcomes of our analysis are likely influenced by
the specific parameters we have chosen to estimate. Thus, it is a priori unknown whether other parameter
combinations yield more accurate model predictions.

4.2. Spatial Variation of Estimated Parameters

Allowing spatial variations in parameter values reduced the model-data misfit for both assimilated and inde-
pendent data (Section 3.4). However, this does not inherently validate the significance of these variations in
relation to the foundational BGC processes. In this section, we aim to explore the spatial patterns of the estimated
parameters concerning the primary environmental factors that influence the variability in these parameters and
chlorophyll-a concentration.

4.2.1. Initial Slope of the P-I Curve

The photosynthesis-irradiance parameters vary in response to various factors, from abiotic factors to community
composition (H. A. Bouman et al., 2018). Nutrient availability modulates the mean irradiance in the surface
mixed layer and critically influences the physiological performance of phytoplankton cells (Carvalho et al.,
2020). The estimated values of the photosynthesis-irradiance parameters ay,,, and ap;, exhibit large spatial
differences varying globally by two orders of magnitude. The magnitude and spatial variability of these estimated
parameters agree well with global observation-based studies (see H. A. Bouman et al., 2018).

The parameter values were generally increased in high-latitude regions (Figures 3a and 3d), which implies
enhanced photosynthetic efficiency of phytoplankton in a low-light environment. The parameter « is influenced
by environmental variables that exhibit significant latitudinal variations. Particularly in polar and temperate
regions, upper ocean physical dynamics affect temperature and light conditions, critically shaping the photo-
synthetic efficiency of marine phytoplankton (Harrison & Platt, 1986; H. Bouman et al., 2005). Although large-
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Month of Max. MLD

Figure 8. (a) Annual maximum mixed layer depth of Massachusetts Institute of Technology general circulation model
(MITgcem) for 2020 and (b) the month of the year when maximum MLDs of MITgem were found in 2020.

scale spatial variations in the estimated ay,,, and ap,, values are observed, temporal differences between seasons
are only observed at higher latitudes.

In the oligotrophic subtropical Pacific Ocean, the values ay,,, and ap;, show increasing trends but never converge
in the DA process. In these regions, the model consistently produces too low nanophytoplankton chlorophyll-a
concentration, mostly likely because of a limited supply of nutrients. To compensate for the consistent nega-
tive bias, the DA raised the values of both ay,,, and ap,, in this ocean basin. The extreme values of ay,,, in the
subtropical region of the basin indicate compensation for the uncertainty produced by other components of the
modeling system, such as, insufficient amount of iron.

The magnitude and variation of the estimated values of ay,,, and ap;, in the oligotrophic North Atlantic are
similar to observations (see H. A. Bouman et al., 2018). The spatial pattern obtained in this study is also similar to
that in Losa et al. (2004). The values of ay,,, decrease with increasing latitude. Although the gradient for ap,, is
not prominent, it exhibits a similar pattern. The values around the Bermuda Atlantic Time-series Study (BATS)
agree with the value obtained by Mamnun et al. (2022) and Spitz et al. (2001).

4.2.2. Maximum Phytosynthesis Rate

A higher value of the maximum photosynthesis rate increases photosynthesis, thus increasing phytoplankton
biomass. A higher phytoplankton growth rate will initially increase the productivity in the oligotrophic sub-
tropical Pacific and subtropical Atlantic regions. However, the nutrients may be depleted over more extended
periods (5 or more years) because there would be less supply of new nutrients below the euphotic zone. Sub-
sequently, this condition can lead to a reduction in overall biological productivity over longer periods.

There is generally a low correlation between biomass and phytoplankton production in high latitudes (Platt
etal., 1991). The relative uncoupling between the chlorophyll-a and the production distributions allowed the filter
ax * highly variable over space. y varied globally by a factor of ~46 (range:

Nano a

al

and MB:’ max

to make the parameters y s

0.38 to 17.72 d~") similar to observations (Marafién & Holligan, 1999). However, the variation of yj is two

orders of magnitude, which is larger than reported from observations (see H. A. Bouman et al., 2018).

max
‘Nano

and upe* are likely driven by changes in

Spatiotemporal differences in the photosynthesis parameters p
oceanographic conditions, for example, temperature, stratification, and macronutrient and micronutrient avail-
ability (Geider et al., 1996) and by the community structure and other biological processes that may consume
cellular energy at the expense of carbon fixation (Puxty et al., 2016). Cold water at high latitudes limits
phytoplankton growth, resulting in lower values of the photosynthesis parameters uyi, and upi (Smith &
Donaldson, 2015). The generally low estimates of these parameters in the boreal and austral polar regions
(Figures 3b and 3e) are consistent with this effect. Further, sea surface temperature (SST) can govern variations in
photosynthesis parameters (Behrenfeld & Falkowski, 1997a, 1997b; Harrison & Platt, 1980; Zaiss et al., 2021).

However, in this study, the warm temperatures encountered in tropical latitudes were not accompanied by
max

consistently elevated values of uy>

and pup. Overall, we did not find a significant dependence of these pa-
rameters on SST, which justifies the absence of a clear latitudinal pattern in the EPVs in this study.

Nutrient availability is the main factor controlling the large variability of photosynthesis parameters (Marafion &

max
Nano

and pp7Y appear to have some dependence on the

Holligan, 1999). The estimated photosynthesis parameters y
spatial variations in the annual maximum mixed layer depth (MLD), which can be seen as a proxy for nutrient flux
into the upper mixed layer. To assess the relationship between nutrient availability and photosynthesis param-

eters, we examined the model's annual maximum MLD for 2020. Figure 8a shows the maximum MLD and
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Figure 8b the month in which this maximum MLD occurred. In the Southern Ocean, a deep MLD is associated
with higher p52, and in the North Atlantic, a deep MLD corresponds to higher uy:"

Nano*

Moreover, in the open ocean, higher temperatures are generally associated with lower nutrient availability
(Sathyendranath et al., 1991), which in turn influences photosynthesis parameters. As upwelling enhances
Namo Was estimated in these regions. In contrast, lower values of p were
estimated in the southern Pacific gyre than the northern Pacific gyre, likely reflecting the stronger water column

stability in the former. In the arctic and subarctic North Atlantic Ocean, deep MLD and strong convective mixing

max

nutrient Sllpp]y, an 1ncrease 1 pU Nano

max

(Figure 8) lead to high surface nutrient concentrations. Consistent with this, s

was elevated, contributing to
increased phytoplankton biomass and surface chlorophyll-a. This suggests that environmental conditions in these
regions were less favorable for diatoms, leading to a negative correlation with pp*

ia

as the filter compensates by
max

reducing diatom productivity. Consequently, the estimated values of uy,
similar to what was found at the BATS station by Mamnun et al. (2022).

and pp exhibit an inverse pattern,

In a large part of the Southern Ocean, the modeled annual maximum MLD goes deeper than 500 m (Figure 8)
before austral summer (Figure 8b). This deep MLD causes high production, leading to high chlorophyll-a con-
centrations in the model simulations. Consequently, the filter estimates higher values of uj52*. Since the filter only

utilizes the covariances between chlorophyll-a and the parameters, rather than direct covariances between

max
Nano

does not necessarily result from the increase in ppix.

different phytoplankton groups, the reduction in u
Instead, the filter lowers chlorophyll-a concentrations through a combination of adjustments, including increased
grazing and reduced chlorophyll-to-nitrogen ratios. Moreover, it is known that satellite observations underesti-
mate chlorophyll-a concentrations in the Southern Ocean (Johnson et al., 2013). In the regions of model deficits
(e.g., the subarctic Atlantic), the filter estimated rather extreme values of these two parameters to achieve a
reasonable agreement between observation and simulation. These values are commonly considered unrealistic

(see H. A. Bouman et al., 2018), despite the exact range of realistic values not being well defined.

max
Nano

max
and upiy.

Spatial variation in surface irradiance may also influence the latitudinal variation in the values of y
The combination of lower surface irradiances and deep convective mixing in high latitudes results in markedly
lower average light levels within the mixed layer. This can result in photoacclimation to lower light levels by
modulating the pigment content per cell and hence the maximum photosynthesis rate (Cullen, 1982; Sathyen-
dranath et al., 2009). However, the influences of the irradiance on the variability of parameters controlling the

maximum photosynthesis rate are poorly understood (Marafién & Holligan, 1999). Here, we have not found any

max
Nano

max

indication that irradiance influences the spatial variation of u and ppiY, which also agrees with the findings of

Marafién and Holligan (1999).

4.2.3. Maximum Chlorophyll-to-Nitrogen Ratio

Irradiance significantly regulates the values of the maximum chlorophyll-to-nitrogen ratio (g“**N ™) (A. H.
Taylor et al., 1997). The dependence of photoacclimation on light is pivotal for accurately predicting the stoi-
chiometry of phytoplankton within light gradients (Alvarez et al., 2018). The photoacclimation term in the
original model by Geider et al. (1998) ties chlorophyll synthesis to the light saturation level of the photosynthetic
apparatus. Specifically, when pigments absorb light in excess of what is utilized for photosynthesis, there is a
downregulation in the synthesis of chlorophyll-a. According to this model, the reduction in light-harvesting

complexes arises mainly from dilution, given that the rate of chlorophyll synthesis decreases compared to car-

Chl:N max

Nano and

bon fixation. Notably, in REcoM2, in addition to the downregulation of chlorophyll synthesis with ¢
gSHNmax the Joss of chlorophyll from functional cells is described by a chlorophyll degradation rate that is also

present in Geider et al. (1998) but assumed to be very low.

One cause for variations of the ratio g€V max

in the open ocean is an imbalance between the light absorption and
energy demands for photosynthesis and biosynthesis in phytoplankton cells (Geider et al., 1996). g©*:N max capn
also change because of variations in phytoplankton photoacclimation and can depend on physiological differ-
ences across phytoplankton groups, from a lower value for smaller species to a higher value for larger diatom cells

(Geider et al., 1998). In REcoM2, the carbon-specific assimilation of nitrogen is converted to chlorophyll units by

multiplying by g®*Nmax for each phytoplankton class (Hauck et al., 2013). In our estimates, the values of
g{MENmax ang gSMNmax were generally increased to minimize the overall positive bias in the simulated
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Chl:N max
Nano

variability than other parameters considered in this study (Figures 3c and 3f) (Table 2).

Chl:Nmax

chlorophyll-a concentrations. However, the estimates of ¢ and gp;, show a smaller degree of spatial

In Geider et al. (1998), the ratio of chlorophyll synthesis to nitrogen assimilation is described as being highest
under low irradiance, where photosynthesis is proportional to light absorption, and decreasing when photosyn-
thesis becomes light-saturated or nutrient-limited. The maximum of this ratio under extreme low-light conditions,
g®":N max - can be interpreted as a base physiological property regulating photoacclimation—specifically, the
allocation of nitrogen to the light-harvesting apparatus when nutrient supply is sufficient but growth is limited by
light. As discussed by Maclntyre et al. (2002), physiological traits such as maximum pigment-to-biomass ratios
vary widely among taxa, influenced by factors including cell size and the energetic or material costs of pigment
synthesis. We therefore interpret ¢“**N™m# a5 a taxa-dependent photoacclimation parameter that can reasonably

exhibit spatial variability reflecting differences in community composition.

4.2.4. Chlorophyll Degradation Rates

dChl

Constraining the chlorophyll degradation rates (5" and d$") presents a challenge in quota-based BGC models.

The original model by Geider et al. (1998) described photoacclimation over daylong time scales, but while it
included a term accounting for chlorophyll degradation, it assumed that term to be very small, based on lab
experiments with diatoms. The inclusion of the chlorophyll degradation rate becomes particularly significant
during low-growth periods in winter and at the lower reaches of the euphotic zone (Sasai et al., 2022). Without a
term for chlorophyll loss, which represents complex processes in aging of photo-stressed cells, the carbon to
chlorophyll ratios (C:Chl) in phytoplankton can become skewed.

The chlorophyll degradation parameter is often subjectively adjusted until a satisfactory alignment between
observational data and model simulations is achieved. However, this approach might not be universally applicable
across different BGC models. In most regions, the parameter values change by a factor of up to 2. In the Arctic and
subarctic Atlantic, both parameters are reduced to values close to zero. This avoids loss of chlorophyll during the
winter months as described by Joli et al. (2024). Replacing the rudimentary chlorophyll degradation model with a
more detailed process-based representation of photosystem functionality degradation can likely refine the
modeled C:Chl ratios (Alvarez et al., 2018).

4.2.5. Maximum Grazing Rate of Zooplankton

The estimated maximum grazing rate of zooplankton (£) exhibits spatial variability by a factor of 170. Despite the
diversity of zooplankton, ranging from unicellular flagellates to multicellular organisms, the REcoM2 version
used here represents a single generic zooplankton group, a common approach in many ocean BGC models.
However, zooplankton grazing is one of the largest sources of uncertainty in ocean BGC models used for climate
projections (Laufkatter et al., 2015; Rohr et al., 2023). Introducing multiple zooplankton types could help reduce
biases in surface chlorophyll-a concentrations (Karakus et al., 2022). In our estimation, we only included the
maximum grazing rate but did not consider the grazing efficiency (y), which is also sensitive (Mamnun
et al., 2023). This choice was motivated from the fact that £ and y are highly correlated (Mamnun et al., 2022) and
hence cannot be estimated independently. However, with only allowing & to vary, its variability most likely
compensates for other grazing-related parameters.

The parameter estimation reduced the values of £ in the Arctic and subarctic Atlantic Ocean (Figure 3i). During a
spring bloom, the biomass of zooplankton trails behind the growth of phytoplankton due to the effects of tem-
perature on zooplankton development (Daase et al., 2013; Sgreide et al., 2010). As a result, there can be situations
where phytoplankton and zooplankton exhibit either a negative correlation (e.g., when phytoplankton increases
while zooplankton biomass is low or vice versa) or a positive correlation (when both populations are increasing).
These dynamics were evident in our study. In REcoM2, surface ocean phytoplankton biomass typically di-
minishes due to aggregated sinking or grazing, as the model does not include physiological mortality. During the
spring bloom, the growth interplay between zooplankton and phytoplankton was more synchronized, mainly as
much of the frontal structure had dissipated by then (Dong et al., 2021). Given the spatiotemporal fluctuations
observed throughout the study, comprehending the intricate relationship between phytoplankton and zooplankton
remains challenging.
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The reduced value of £ in the oligotrophic subtropical South Pacific Ocean (Figure 3i) substantially increases the
phytoplankton production in the simulations. This compensates that the model underestimates chlorophyll-a
(Figure 2) in this region when the DPV is used. Saito et al. (2005) also found that grazing parameters in this region
are highly sensitive. A different effect is found in regions with strong upwelling and convective mixing, such as
the Southern Ocean and the tropical North Pacific. Here, increasing the grazing rate substantially reduces surface
chlorophyll-a concentrations, which minimizes the misfit with observations. The sensitivity studies with 1-D
model configurations in the tropical North Pacific Ocean (Chai et al., 2002; Dugdale et al., 2002) also agree.
The parameter estimation also increased the value of £ around the BATS site, which agrees with the study with a
1-D model configuration of REcoM2 (Mamnun et al., 2022) and other previous studies (Doron et al., 2013; Losa
et al., 2004). In situ measurements (Evelyn & Michael, 1998) also show that the grazer community consumes
most of the production at this location. In addition, increases of £ in the high-nutrient, low-chlorophyll regions of
the Southern Ocean led to suppressed phytoplankton mass on the surface and compensate for overestimated
surface chlorophyll-a by the model.

4.3. Parameter Compensation for Other Model Deficiencies

Our parameter estimation focused exclusively on uncertainties arising from BGC parameters. By treating only
nine biological parameters as stochastic and updating them through the assimilation of chlorophyll observations,
we did not account for other sources of model error. These include additional biological parameters, errors in the
underlying physical model, physical forcing, boundary and initial conditions, and even the functional form of
model equations. Moreover, model discrepancies may also stem from coupled system components, such as sea ice
dynamics, atmospheric forcing, or inherent structural inadequacies in the model framework. While the model
agrees reasonably well with existing observations, this agreement may result from BGC parameter adjustments
compensating for limitations in other model components or structural uncertainties. Such compensatory errors
pose significant challenges for future climate projections. While they may yield plausible simulations for the
present state, they undermine confidence in the model's predictive capability for future scenarios (Loptien &
Dietze, 2019). This limitation also implies that the parameter estimates are model-specific.

A particular REcoM2-specific effect is that the free run consistently produces a thin line of elevated chlorophyll-a
in the southern subtropical gyres, most visible in the subtropical South Atlantic and Indian Ocean (Figure 2). This
feature is an artifact of the formulation of growth limitation in REcoM2. Directly at the transition from iron to
nitrogen limitation, neither of the two limitation terms is as low as in the centers of the limited regions. In the
REcoM2 code, the colimitation is calculated as a minimum of two limitation terms, so there is less limitation
directly at the transition than in the equilibrium regions. The DA reduced this line of elevated chlorophyll-a.
Although the values of chlorophyll-a in these features are smaller and probably do not affect global BGC cycles
much, the parameter estimation process responded to this model deficiency. This is particularly visible for the
maximum chlorophyll to nitrogen ratio of nanophytoplankton and the maximum grazing rate in Figures 3c and 3i.
These parameters had larger changes in the transition regions to compensate for the elevated chlorophyll-a. These
parameter estimates resulted in a reduced line of elevated chlorophyll in the adjusted rerun (ADJ_FOR). How-
ever, the parameter estimations are obviously specific for this colimitation effect and do not fully resolve it.

Whenever uncertainties from different sources compensate for each other, the ocean BGC model may yield
reasonable outputs for the period for which the parameter estimation was conducted. However, this compensatory
behavior compromises the model's utility for gaining mechanistic insights and for being a reliable predictive
instrument beyond that specific timeframe. This phenomenon is particularly concerning when considering slow
climate BGC feedback mechanisms, which are inherently challenging to probe with current observations.

In practice, when uncertainties beyond just model parameter uncertainties influence the parameter estimations,
the outcomes of parameter estimates become indeterminate in their effectiveness. While compensating for these
uncertainties can mitigate some deficits, it does not address all of them. This phenomenon was evident in Simon
et al. (2015), where parameter estimation was conducted on a regional BGC model for the North Atlantic and
Arctic Oceans. Furthermore, parameter estimates optimized for a specific location or regional scale can deteri-
orate model outcomes for other regions, as highlighted by Friedrichs et al. (2007). This underscores the need for
estimating spatially varying BGC parameters.
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5. Summary and Conclusion

We employed ensemble DA to estimate spatiotemporally varying values of nine uncertain process parameters
within a 3-D global ocean BGC model by assimilating satellite surface chlorophyll-a concentrations. The EPVs
are (a) the initial slope of the P-I curve for nanophytoplankton and (b) diatoms, (c) the maximum photosynthesis
rate of nanophytoplankton and (d) diatoms, (¢) the maximum chlorophyll-to-nitrogen ratio for nanophytoplankton
and (f) diatoms, (g) the chlorophyll degradation rate of nanophytoplankton and (h) diatoms, and (i) the maximum
grazing rate of zooplankton. Applying an EnKF, we adopt the augmented state vector approach, which allows us
to use multivariate correlations between BGC parameters and observed state variables, that is, surface
chlorophyll-a concentration to estimate the parameter values. In addition to the chosen nine parameters, the DA
updated eight model state variables, namely the biomass content of carbon, nitrogen, and calcium carbonate of
nanophytoplankton; biomass content of carbon, nitrogen, and silicate of diatoms; and chlorophyll-a concentration
in nanophytoplankton and diatoms, which were used as the initial conditions for the next forecast cycle.

The resulting parameter estimates span a range above and below the default values, underscoring the efficacy of
DA in enhancing the model's regional parameterization. Notably, simulations with the optimized spatially varying
parameters align more closely with observations than those using uniform defaults, with a 26% reduction in
RMSD for annual surface chlorophyll-a concentrations and a higher correlation (0.73 vs. 0.52) with OC-CCI data.
Seasonal improvements are also evident capturing spring bloom dynamics more accurately. Comparisons with
satellite-based NPP estimates further confirm improved agreement, though regional discrepancies remain,
especially in coastal areas where parameter estimation uncertainties or retrieval challenges may play a role. In
some regions, the EPVs change markedly over shorter spatial scales. Such sharp gradients in parameter values
over short distances are unlikely to be ecologically plausible. Future work could therefore explore methods for
spatial regularization, for example, by constraining parameters to vary smoothly within regions of relatively
uniform BGC properties.

A notable, albeit anticipated, consequence of augmented state parameter estimation is the filter's unpredictable
use of the additional degrees of freedom. Although our primary objective is to achieve the best parameter esti-
mates by minimizing their uncertainty, the DA process may inadvertently offset the uncertainty from other
sources. This can result in suboptimal parameter estimates yet improved state estimates. Such parameter esti-
mates, resulting from the compensation of other uncertainties, restrict the portability of these estimates to a
different model configuration or a different model.

While our results demonstrate the efficacy of the estimation method assimilating ocean color data, possible
extensions and improvements of the method are numerous, and further developments of DA for different types of
observations should be explored. The methodology evaluated in this study is not exclusive to the MITgcm-
REcoM2 model and does not necessitate extensive inverse model developments. Thus, it can be adapted to
other models, provided that the ensemble simulations, which describe the model's response to parameter un-
certainty, are computationally viable. Our approach offers a valuable alternative for consideration in a research
environment with multiple coexisting models and limited computational resources for expanding variable counts
and calibrating parameters. An additional avenue for future work is to investigate the relative impact of allowing
parameters to vary spatially alone versus both spatially and temporally, as incorporating temporal variability may
further refine model calibration and skill.
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