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Abstract 

Observations in Siberian river estuaries show a very pronounced vertical stratification 
during summer. In particular in the Yenisei Estuary, salinity profiles are strongly affected, not 
only by freshwater runoff, but also by bottom following salt intrusions that penetrate actively 
into the estuary. 

In order to study the estuarine variability and to investigate the physics behind these salt  
intrusions, two different numerical circulation models are applied to the Kara Sea and the 
estuaries of Ob and Yenisei. The 3-D, baroclinic models are based on the realistic topography, 
forced with wind, tides and river runoff. 

Model results from summer reveal a general northward flow of river water at the surface 
out of the estuaries. Near the bottom, however, a south-westward transport of saline water 
from the Taymyr coast towards the estuaries prevails. A salt intrusion occurs during strong 
runoff when the direction of the wind-induced offshore transport is aligned with the axis of 
the estuary. In this case, the enhanced surface flow has to be compensated by an onshore near 
bottom flow that may penetrate into the estuary. 

Salt intrusions occur frequently in the Yenisei Estuary in connection with north-easterly 
winds, a prevailing wind direction in summer in the Kara Sea. In the Ob Estuary, salt 
intrusions are almost absent and the haline stratification is weaker than in the Yenisei. This is 
due to enhanced tidal mixing in the Ob but also due to the orientation and depth profile of the 
estuary. 

1 Introduction 

The Kara Sea is a marginal shelf sea located in the Eurasian part of the Arctic Ocean. It is 
influenced by oceanic water masses from the Arctic Ocean, the North Atlantic and the 
Barents Sea. Additionally, the Kara Sea receives large amounts of freshwater through the 
Siberian rivers Ob and Yenisei. The rivers drain a catchment area in Siberia and Russia of 
more than 5 mill. km2. The total annual amount of freshwater input into the Kara Sea equals 
roughly 1200 km3/y of which 80% is discharged in spring (May-June) (Pavlov and Pfirman, 
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1995). Peak freshwater discharge rates of more than 100,000 m3/s lead to a pronounced 
vertical stratification in the estuaries of Ob and Yenisei. Under specific meteorological 
conditions, high saline marine waters may penetrate as a bottom following counter flow into 
the estuary which additionally enhances the stratification. 

One goal of the bilateral German/Russian project SIRRO is to study the dispersion and fate 
of biogeochemical tracers emerging from Ob and Yenisei rivers. In numerical transport 
models, most of these river tracers cannot be regarded as dissolved and conservative, 
dispersed only by the circulation. Horizontal and vertical gradients between freshwater and 
brackish water affect the transport behaviour and form a so called'marginal filter’ . The 
mixture of river and sea water leads to a settlement of suspended material as well as to the 
formation of precipitates. Knowing the time and space variability of the vertical stratification 
and the transition zone between freshwater and marine waters is therefore a prior condition 
for the investigation of estuarine transport processes.  

Several publications were dealing so far with the area and the above described phenomena. 
Since a complete review of the previous work and the existing literature is out of scope of the 
present paper we refer only to some important work. The penetration of high saline, marine 
waters into the Ob and Yenisei estuaries has already been noted in early descriptions of the 
hydrological regimes of these areas by Antonov (1962) and Antonov and Maslaeva (1965). 
More recent papers investigated the magnitude of salt water intrusions depending on tides, 
wind surges and river discharge in the Ob Gulf (Ivanova, 1984; Stanovoy, 1984, Ivanov and 
Sviyatsky, 1987) and in the Yenisei Gulf (Graevsky, 1997). During intense field studies in 
summer 1993-1996 in the Kara Sea, different types of data from the region of freshwater 
influence (ROFI) of Ob and Yenisei were obtained. Results from these campaigns are given 
e.g. in Johnson et al. (1997) and McClimans et al. (2000). A good reviewing description of 
the variability in Kara Sea estuaries, based on long term observations, can be found in 
Stanovoy and Nøst (2002a,b). 

Hydrodynamic modelling was previously carried out by e.g. Pavlov (1996) or Harms and 
Karcher (1999) who investigated more generally the circulation and hydrography of the Kara 
Sea, but also the river runoff and the transport of river tracers from Ob and Yenisei (Pavlov 
and Timokhov, 1997); (Harms et al., 2000). Model studies in the Ob Gulf were performed by 
Ivanov and Sviyatsky (1987) and Doronin and Ivanov (1997), mainly for simulating the 
magnitude of salt water intrusions depending on the river discharge and its inter-annual 
variability. Also a laboratory model was applied in order to investigate transport processes in 
the eastern Barents and Kara Seas (McClimans et al., 1997; McClimans et al., 2000).   

2 Observations 

Regular measurements of water temperature and salinity in the Yenisei Estuary started in 
the 1930’s. Data were collected during summer and winter expeditions, mainly by the Arctic 
and Antarctic Research Institute (AARI, St. Petersburg) and by the Dikson 
Hydrometeorological Observatory. Summer observations were carried out from the second 
half of July until the beginning of October. In wintertime, observations under the ice were 
carried out from March until the beginning of June.  
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In general, the historical data showed a permanently existing pycnocline in the estuary but 
only recent CTD1-profiles (from 1993 on) revealed that vertical salinity and temperature 
gradients may be extremely strong and reach values of up to 5-10 per 10 cm and 1.5-2.0 °C 
per 10 cm. The average multiyear salinity at the surface and bottom in August and the vertical 
distribution of temperature and salinity in summer 2001 in the Ob and Yenisei Estuary is 
shown in Figures 1 and 2. These pictures exhibit a clearly pronounced two-layer structure of 
the water masses which is the typical situation during summer. It is also apparent that the 
difference between surface and bottom water salinity is more pronounced in the Yenisei 
Estuary, where saline bottom water seems to penetrate into the estuary. 
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Fig. 1: Average multiyear salinity at the surface (upper panels) and at the bottom (lower panels) in 
August in the estuaries of Ob (left) and Yenisei (right). 
 
                                                   
1 CTD = Conductivity, temperature and depth 
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Fig. 2: Selected profiles of temperature (solid lines) and salinity (dashed lines) in summer 2001 in the 
estuaries of Ob (left) and Yenisei (right).  
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Fig. 3: Salinity sections in the Yenisei Estuary, observed in: (a) summer 2001, (b) summer 2000 and 
(c) summer 1995. Distance labels start at 73o 50' N; 80o 00' E 
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The most rapid freshening of estuarine surface waters in Ob and Yenisei occurs in spring 
when the spring flood wave passes through. At Dikson Island (outer Yenisei Estuary), for 
example, a sea surface salinity between 0-2 is observed for 20-30 days in June-July. 
Horizontal salinity gradients may reach values of up to 0.5 per 1 km. The horizontal transition 
zone between freshwater and brackish water in summer is located usually in the middle part 
of the Yenisei Estuary, between 71o 30' and 72o 00' N (Stanovoy and Nøst, 2002b). A typical 
example of such a distribution was observed during the last cruise of RV "Akademik Boris 
Petrov" in summer 2001 (Fig. 3a). This section shows clearly the horizontal salinity gradient 
just above the sill and the strong vertical stratification further seaward. Specific 
meteorological conditions might enhance the observed stratification shown in Figure 3a 
considerably. Driven by an on-shore counter flow at the bottom, saline bottom water may 
penetrate into the estuary, leading to so called'salt intrusions’ . Figures 3b and c show this 
phenomenon on two Yenisei sections taken in summer 1995 and 2000. In both figures, high 
saline bottom water has moved upstream of the sill, into the river delta, however, with  
different intensity. 

The apparent interannual variability of salt intrusions is depicted more clearly in Figure 4, 
which shows the bottom water salinity for August, September and the winter season in the 
Yenisei river delta, north of the large sand bank. 
 
 

 
Fig. 4: Observed interannual variability of bottom water salinity for August, September and winter 
season (left) at 71o 24' N, Yenisei Estuary (right panel, dot). 

 
All available observations carried out during the last 50 years were used. An extremely 
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September, even if the absolute values are lower compared to August. Also in winter, the 
bottom water salinity varies considerable from year to year. The fact that the winter values are 
partly higher than the summer values can be attributed to a much weaker stratification in 
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winter and a general southward shift of the transition zone between freshwater and brackish 
water (Stanovoy and Nøst, 2002b). 

These observations suggest that salt intrusions vary significantly on inter-annual time 
scales depending on the meteorological situation. We therefore expect also variations on 
shorter time scales. However, due to sparse data, it is difficult to assess the seasonal or 
monthly variability of salt intrusions from observations. In this situation, numerical models 
can be a valuable tool to give a more complete view of the variability in that region and the 
physics behind. 

3 Model Exper iments 

Two well established hydrodynamic models are used to investigate circulation and 
stratification in the estuaries of Ob and Yenisei. Although the area of investigation is the 
same, the model types and the scope of the model applications are different: the 
HAMSOM/VOM application is focused on multi-year runs based on climatological, monthly 
mean forcing whereas the SCRUM application investigates only the ice free period in summer 
based on synoptic 12-hourly forcing. The aim of this paper is not to evaluate the model types 
or approaches but to interpret the model results in comparison with observations.   

The following two sections describe the model type and configuration of the 
HAMSOM/VOM and the SCRUM approach. 

3.1 HAMSOM / VOM application 
At the Institute for Oceanography, University Hamburg, the shelf sea modelling group 

applies a high resolution baroclinic 3-D circulation and sea ice model to the Kara Sea (Fig. 5). 
The horizontal grid resolution is 9.4 km. The model is based on the coding of the Hamburg 
Shelf Ocean Model HAMSOM, introduced by Backhaus (1985), and previously applied to the 
Barents and Kara Sea by Harms (1997a, b); Harms and Karcher (1999) and Harms et al. 
(2000). HAMSOM is based on non-linear primitive equations of motion, invoking the 
hydrostatic approximation and the equation of continuity, which serves to predict the 
elevation of the free surface from the divergence of the depth mean transport. The numerical 
scheme is semi-implicit and the equations are discretised as finite differences on an Arakawa 
C-grid (Stronach et al., 1993). 

The circulation model is coupled to a thermodynamic and dynamic sea ice model, which 
calculates space and time dependent variations of ice thickness and ice concentration (Hibler, 
1979). Sea surface heat fluxes, calculated with bulk formulae (Maykut, 1986), are used to 
determine prognostically the ocean temperature and thermodynamic ice formation (Parkinson 
and Washington, 1979). The circulation model includes an Eulerian transport algorithm for 
temperature, salinity and passive tracers, based on the advection-diffusion equation.  

In order to handle complex bathymetries and to reproduce more realistically topographic 
effects on circulation and hydrography, the coding was vectorised and supplied with a vertical 
adaptive gridding technique (Backhaus, pers. com.). The Vector Ocean Model (VOM) is a 
level type model but the vertical adaptive grid implies that the number of levels and the 
thickness depends on the topography. The Kara Sea grid provides a high resolution in critical 
areas such as shallow estuaries, slopes and topographic obstacles. Surface and bottom 
following boundary layers are resolved uniformly in 4 m intervals (Fig. 5). This allows for a 
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better reproduction of estuary and shelf processes such as vertical stratification, stratified 
flows or current shear due to surface and bottom friction. 
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Fig. 5: Domain and topography of the HAMSOM/VOM Kara Sea Model (upper panel) and vertical 
grid resolution (lower panels) on two selected sections (dashed lines). 

 
Our present studies are forced with realistic atmospheric winds, heat fluxes, river runoff 

and tides. The wind forcing is based on a climatological year prepared by Trenberth et al. 
(1989) from ECMWF data (ECMWF, 1988) for the period 1980-1989. Monthly mean 
climatological air temperature, humidity and cloud cover data were compiled by Aukrust and 
Oberhuber (1995) from ECMWF-data for the period 1985-1990. River runoff rates for Ob 
(incl. tributaries Taz and Pur), Yenisei and Pyasina are prescribed as daily mean volume 
fluxes in m3/s, interpolated from 10-day mean values. Information on runoff to the Kara Sea 
was taken from a data review on the hydrology of Arctic rivers, described in more detail in 
Harms and Karcher (1999). The Kara Sea Model accounts for the dominant M2-tidal 
constituent. Amplitudes and phases were taken from tidal models of the Arctic Ocean (Gjevik 
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and Straume, 1989; Kowalik and Proshutinsky, 1993; 1994) and applied to the open 
boundaries. A detailed description of the tidal solution is given in Harms and Karcher (1999). 
The simulation of the climatological year was started at 1st of January using initial 
temperature and salinity distributions from validated previous model runs (Harms and 
Karcher, 1999). The model was run in a prognostic mode allowing for three-dimensional 
temperature and salinity advection including sea surface heat fluxes and ice formation. 

3.2 SCRUM application 
The modelling group at AARI, St. Petersburg applies a Kara Sea model based on the 

coding of the S-Coordinate Rutgers University Model SCRUM, developed at the Institute of 
Marine and Coastal Sciences at Rutgers University. Hedstrom (1997) gives a detailed 
description of SCRUM with some applications. The main goal of the SCRUM application to 
the Kara Sea is to study estuarine processes on synoptic time scales during the ice-free period. 
Therefore this model application does not include an ice model.  

The principal attributes of SCRUM are very similar to HAMSOM: SCRUM applies 
primitive equations with hydrostatic and Boussinesq approximation to calculate the 3-D flow 
field and the free surface. The discretisation is based on the Arakawa C grid. Advection 
schemes allow for a prognostic transport of tracers (potential temperature, salinity, etc). Also 
the horizontal resolution (10 km) and the model domain of the SCRUM Kara Sea Model is 
very similar to the HAMSOM/VOM Kara Sea model (c.f. Fig. 5). The main and important 
difference to HAMSOM however, is the vertical grid approximation: SCRUM is a layer type 
model that uses terrain-following, stretched coordinates. The vertical scale is resolved 
uniformly with 10 layers which means that in shallow areas each layer thickness is much 
smaller than in deeper areas.  

The initial temperature and salinity data for winter and the river runoff to the Kara Sea 
were taken from the Joint Russian-US Atlas of the Arctic Ocean. The river runoff is 
prescribed as monthly mean discharge rates of the Ob and Yenisei rivers. The surface wind 
stress at 10 m height above the sea surface is prescribed twice a day (12 hourly forcing), 
based on NCEP/NCAR reanalysis data. 

4 Model Results 

In order to study the variability of the vertical stratification and to detect possible salt 
intrusions, we analysed the HAMSOM/VOM daily mean fields of salinity of the 
climatological year. An example for a typical summer situation is depicted in Figure 6 for the 
5th of August. At the surface, the low saline river plume shows its largest extent, spreading in 
the entire central Kara Sea from the estuaries almost up to the Novaya Semlya coast. At the 
bottom, however, the extent of the freshwater plume is much smaller and shows several 
branches with higher saline water reaching from the north-east into the estuaries. In particular 
in the Yenisei, a salt intrusion penetrates deep into the estuary and the river delta. 

The intensity of vertical stratification is different for Ob and Yenisei. Looking at the 
salinity differences between surface and bottom (Fig. 7), it becomes clear that the 
stratification is most pronounced in the Yenisei where the difference between surface and 
bottom salinity exceeds 20. The stratification in the Ob is weaker and the salt intrusion does 
not penetrate very far into the estuary.   
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Fig. 6: Simulated salinity distribution (HAMSOM/VOM) at the surface and at the bottom for the 5th of 
August, climatological year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Simulated salinity difference (surface-bottom, c.f. Fig. 5) at the 5th of August, climatological 
year. 
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The reason for estuarine salt intrusions can be found in the vertical distribution of the 
circulation field depicted in Figures 8 a and b for the 5th of August. The surface flow (a) is 
dominated by the runoff from the Ob and Yenisei. In the estuaries, intense north-westward 
flows drive the surface freshwater into the central Kara Sea where the front of the plume is 
visible as a slight discontinuity in the flow field. A striking feature at the bottom (b), however, 
is the south-westward flow along the Taymyr coast which is stronger than the corresponding 
surface flow and partly in the opposite direction. This model result reflects the reality very 
well: vertical current shear with north-westerly flows at the surface and south-westerly flows 
at the bottom were also reported by Johnson et al. (1997) and McClimans et al. (2000) from 
observations in that area. McClimans et al. (1997) found very similar flow patterns in 
laboratory model results, although this model had no wind forcing. Since the simulated south-
westward bottom current at the Taymyr coast is very persistent during summer, we assume 
that this flow brings saline water from the north-eastern Kara Sea towards the estuaries thus 
enhancing the vertical stratification and forming a pool of saline bottom water in front of the 
river mouths. The pool of saline water may feed a bottom current in the estuary itself, leading 
to a salt intrusion in the river delta. Such a situation is clearly visible in Figure 8 b for the 
Yenisei.  
 

surface, daily mean
                  20 cm / sec

Dikson

 
Fig. 8a: Simulated, de-tided and daily averaged surface flow (HAMSOM/VOM) at the 12th of July, 
climatological year. 
 

In particular in the eastern part of the estuary, the bottom flow opposes the surface flow, 
forming a counter current that penetrates partly into the estuary. A time series of surface and 
bottom flows on a section in the eastern Yenisei Estuary (Fig. 9) suggests that the bottom 
counter current (shaded areas) compensates strong off-shore flow at the surface. Both flows 
reveal a significant inverse correlation: a southward bottom flow usually appears together 
with a northward surface flow and vice versa. 
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Fig. 8b: Simulated, de-tided and daily averaged bottom flow (HAMSOM/VOM) at the 12th of July, 
climatological year. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 9: Time series of de-tided bottom and surface flow in the outer Yenisei Estuary, near Dikson (see 
Fig. 7), from 1st of March to 30th of November, climatological year (HAMSOM/VOM). Shaded areas 
denote periods and strength of on-shore bottom flow. 
 

The main driving force for this anti-correlated flow regime is the surface wind stress in the 
Kara Sea. The applied climatological ECMWF wind patterns show strong, monsoon-like 
variability due to the seasonal air pressure distribution over the Arctic. In winter, cyclonic 
vorticity prevails over the Barents and Kara Seas area with main local wind directions from 
south to south west. In summer, however, the wind fields show anti-cyclonic vorticity with 
dominating north to north-easterly winds in the southern Kara Sea (Harms and Karcher, 
1999). Since the wind induced mass transport on the northern hemisphere is between 45°and 
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90°to the right of the wind direction, north-easterly winds cause a north-westerly off-shore 
surface transport away from the Taymyr coast and out of the Yenisei delta. As a result, the 
coastal sea level drops and a compensatory bottom flow may penetrate into the estuary. 

Very similar results were obtained by the modelling group at AARI St. Petersburg. A 
characteristic example for the onshore, near bottom flow in the Yenisei Estuary simulated 
with SCRUM is presented in Figure 10 for the 29th of August 1978. Like with the 
climatological ECMWF data, the NCEP/NCAR wind patterns at that time (Fig. 10a) are 
characterised by an anticyclonic rotation over the Kara Sea, with strong north-easterly 
components over the Yenisei Estuary. This drives a surface flow of more than 40 cm/s out of 
the estuary whereas a near bottom counter current flows at 20 cm/s in the opposite direction 
(Figs. 10 b and c). The onshore current at the bottom is most pronounced in the deep eastern 
part of the Yenisei Estuary, which is also seen in the HAMSOM/VOM simulations. 
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Fig. 10: Applied wind patterns (a), bottom flows (b) and along section components of current speed 
(c) at the 29th of August 1978, simulated with the SCRUM Kara Sea Model. 
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Fig. 11: Current vector time series from 8th to 9th of August 1975 for 9 m (a) and 22 m (b) depth, and 
sea level elevation at Dikson (c). Inlay (d) shows the position of the mooring (triangle) and the coastal 
station Dikson.  

 
The simulated circulation from both models can be compared qualitatively with direct 

current measurements in the outer Yenisei Estuary, close to Dikson, from 8th and 9th of 
August 1975 (Fig. 11). The current meter mooring reveals a wind induced shift of the surface 
flow from north-east to north-west within two days. The north-westerly flow drives surface 
waters out of the Yenisei which causes a drop of the coastal sea level at Dikson. At the same 
time, the bottom flow shifts from off-shore to on-shore directions, finally forming a 
compensatory counter current that flows at 5 cm/s into the estuary. Although the time series 
covers only a short period, it illustrates the physics behind the salt intrusions and supports 
clearly the model findings. 

5 Discussion 

The applied horizontal model grid size of 9-10 km is still too coarse to trace salt intrusions 
further upstream of the sill and in the inner parts of the river delta. However, both models 
provide a high vertical resolution which is the main reason for their principal capability in 
reproducing observed Arctic coastal and estuarine dynamics and hydrography. SCRUM 
simulations for example show that calculated daily sea level elevations at coastal stations 
compare reasonably well with observations during the ice-free period (Fig. 12). A salinity 
section, simulated with HAMSOM/VOM (Fig. 13), is in qualitative agreement with salinity 
measurements presented in part I (c.f. Figs. 3a, b and c). Since direct current measurements 
are scarce and mostly not available for model comparison, the reproduction of single 
hydrographic observations, like sea levels, profiles or sections, constitutes a valuable model 
validation. These kinds of comparisons give confidence in using other model scenarios and 
parameters, not covered by measurements. Although the number of comparisons is very few, 
the reasonable agreement with hydrographic observations justifies the use of our model 
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results for the investigation of flow variability and physics that determine estuarine processes 
in Arctic Shelf Seas. 
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Fig. 12: Comparison of calculated (SCRUM) and observed sea surface elevations at coastal stations 
from July to September 1994. 

 
The HAMSOM/VOM results depicted in Figure 9 suggest, that the summer flow regime is 

quite sensitive to the local wind directions over the Yenisei Estuary. In spite of the wind-
induced input of anti-cyclonic vorticity at the surface from April to August, the summer flow 
regime is suppressed and almost reversed during a two weeks period in late May to early 
June. The reason is that the wind directions in June deviate slightly from the north-easterly 
direction and show more northerly components. Although the wind stress is very weak, 
northerly directions are able to slow down the surface off-shore flow which also affects the 
counter current. 

An important point in this respect is the fact that the applied wind forcing is based on a 
climatological year which is purely artificial. Monthly mean values are very smooth due to 
averaging in the time domain and they do not reflect synoptic atmospheric variability at all. 
Although based on climatological forcing, the model results show that the estuarine summer 
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circulation is quite sensitive and responds directly to local wind effects. It can be assumed 
therefore that deviations from the typical summer circulation caused by small scale 
atmospheric variability occur more often and at shorter time scales than simulated.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 13: Simulated salinity section in the Yenisei Estuary (see dashed line) for July, climatological 
year (HAMSOM/VOM).  

   
Apart from the simulated blocking situation in May/June, the outlined summer circulation 

regime in the Yenisei prevails from April to August with peak intensities in April and July. 
However, the most interesting period with respect to variability of vertical stratification is 
probably late summer when the circulation regime changes from summer to winter. In the 
climatological HAMSOM/VOM simulation, the first half of August is still dominated by the 
summer situation with prevailing off-shore transport at the surface and on-shore flow at the 
bottom. The hydrography is characterised by high saline winter water at the bottom which is 
overlaid by large amounts of fresh water at the surface (c.f. Fig. 6). The vertical stratification 
is extreme due to salt intrusion at the bottom of the Yenisei delta. At mid August, however, 
the summer circulation breaks down and changes to the opposite, winter type flow. Salt 
intrusions vanish rapidly and the vertical stratification is eroded. If this dramatic change 
occurs during measurements in the estuary, the interpretation of the data might become 
difficult. In fact, most expeditions are carried out during the ice free season in July, August 
and/or September. It is therefore important not only to measure classical hydrographic 
parameters, but also to observe meteorological conditions and the resulting circulation by 
means of e.g. current meters or ADCPs2. 

As outlined above, simulated salt intrusions are more pronounced in the Yenisei than in the 
Ob Estuary. The model results suggest that this is first of all due to the tidal mixing which is 
weaker in the Yenisei than in the Ob. Another important feature affecting salt intrusions is the 
shape of the sea bed of the estuary, which should be narrow and deep as with the Yenisei 
rather than shallow and broad as with the Ob. Also the geographical orientation of the estuary 
plays a role. The runoff direction in the Yenisei is more or less 90°to the right of prevailing 
north-easterly wind directions in summer that results in a maximum off-shore volume 

                                                   
2 ADCP = Acoustic Doppler Current Profiler 
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transport. The orientation of the Ob Estuary is different and the same effect for the Ob would 
require south-easterly winds that are probably less frequent.   
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Fig. 14: Vertical profile of temperature and salinity (A) and oscillations of temperature and salinity at 
the 7.5 m depth horizon (B) at station 11 (72o 06'N; 81o 42'E) in summer 2001. 
 

The tidal influence on estuarine processes is mainly through horizontal and vertical 
mixing, internal wave activity and tidal residual flow due to non-linear bottom stress. 
Simulated residual currents (Harms and Karcher, 1999) were only found in the Ob Estuary, 
north of the Yamal peninsula and in the Baydaratskaya Bay. Around Belyy Island, residual 
currents form a weak anticyclonic circulation, however, the velocities here are generally small 
and remain below 2 cm/s. In the Yenisei Estuary, residual advection due to tidal activity plays 
an insignificant role. Also the upstream Stokes drift in the bottom layer, induced by the 
incoming tidal wave, is very weak in the Yenisei and remains in the range of 1 cm/s. 
Although the tidally induced advective transport is very weak, both processes, residual flow 
and Stokes drift, have to be regarded as permanent features in the whole system that 
contribute to estuarine dynamics but do not control e.g. salt intrusions. 

The most important effect of tides on estuarine transport processes is through horizontal 
and vertical mixing. Strong tidal currents near the Ob Estuary provide a constant source for 
mixing in this area. Simulated M2-tidal elevations usually remain below 20 cm in the Kara 
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Sea except two regions: the southern Baydaratskaya Bay, where tidal resonance causes 
amplitudes of more than 70 cm, and the area north of Yamal peninsula around Belyy Island 
(30-35 cm). North-east of the Yamal peninsula and in the small strait between Yamal 
peninsula and Belyy Island, simulated tidal currents may exceed 50 cm/s due to considerable 
horizontal gradients in tidal elevation. Stanovoy and Nøst (2002b) note that in the north-
western Ob Estuary tidal elevations reach up to 1.8 m with tidal currents between 70 – 80 
cm/s. Tracer simulations showed that these areas are significantly influenced by tidal mixing 
(Harms et al., 2000). In all other regions, in particular in the eastern Kara Sea and along the 
Taymyr coast, tidal mixing is much weaker. 

Tides are also an important source for mixing and entrainment through the process of 
vertical instability and breaking of internal waves. Measurements carried out in summer 2001, 
showed very  pronounced and classical examples of internal waves with periods of 8-12 min 
and 2-5 min in the Yenisei Estuary (Stanovoy and Shmelkov, 2002) (Fig. 14). The probability 
of dynamic instability and internal wave breaking is high for wave periods of 2-5 minutes. 
This could result in turbulent mixing and pycnocline erosion. As opposed to meteorologically 
induced features, all these tidal processes occur permanently to influence estuarine dynamics 
and hydrography. 

Although the wind stress may vary slightly between Ob and Yenisei, the overall 
meteorological situation is very similar for both estuaries and cannot be responsible for large 
spatial variability. The observed and simulated difference between Ob and Yenisei in terms of 
vertical stratification and intensity of salt intrusions must be attributed to the different 
topography and the tidal influence, in particular tidal mixing. Future model studies should 
take these points into consideration. 
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