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Abstract

An adaptive parallel spherical shallow-water model is introduced that uses
the Lagrange-Galerkin method (semi-Lagrangian method + finite element
method (FEM)).

The scalar formulation of the shallow-water equations, its discretisation
and numerical realization are described using suitable techniques for spatial
adaptivity, e.g., a stable discretization method, an adaptive grid generator
with the space filling curve approach and a flexible solver interface. Compu-
tational results show the experimental convergence of the numerical method.

1 Introduction

In this article we want to present a recently developed numerical model based on
the shallow-water equations on the sphere with an adaptive grid. This model was
developed in the joint project PLASMA (Parallel LArge Scale Model of the At-
mosphere). PLASMA is founded in the framework of DEKLIM (German Climate
Research Programme) by the Federal Ministry of Education and Research Germany.
Project partners are S. Frickenhaus, N. Rakowsky and W. Hiller at the Alfred We-
gener Institute in Bremerhaven (responsible for parallelization, code-optimization,
solver-implementation), J. Behrens and T. Heinze at the Munich University of Tech-
nology (responsible for grid generator and conserving properties) and M. Läuter,
D. Handorf, K. Dethloff at the Alfred Wegener Institute in Potsdam (responsible
for the physical background and numerical methods).

2 Model Equations

The shallow-water equations describe a horizontal flow within a thin layer of fluid
having dynamically varying height and a static underlying orography Φ0. Starting
from the vector formulation in [3] on the unit sphere S and with an evolution time
T we obtain, by using the horizontal differential operators defined in the Appendix,
the equations

∂tu + u · ∇S u +∇S Φ = −fn× u− |u|2 n, (1)
∂tΦ + u · ∇S(Φ− Φ0) + (Φ− Φ0) divS u = 0,

u · n = 0

on S. In a rotating Cartesian coordinate system centered in the center of the globe
u : S × (0, T )→ R

3 denotes the velocity field, Φ : S × (0, T )→ R the geopotential,
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f = 2 Ω · n with Ω = (0, 0,Ω)T the Coriolis parameter and n the outward normal
vector on S. After applying rotS and divS to equation (1) and defining ζ := rotS u,
δ := divS u we obtain the scalar formulation

∂tζ + u · ∇S ζ + ζ δ + f δ = −u · ∇S f,

∂tδ + u · ∇S δ + ∆S Φ− f ζ = −(n× u) · ∇S f − J(u),
∂tΦ + u · ∇S(Φ− Φ0) + (Φ− Φ0) δ = 0

 (2)

with the Helmholtz decomposition

−∆S ψ = ζ,

∆S χ = δ,

rotS ψ +∇S χ = u

 (3)

on S, where ψ and χ are the streamfunction and the velocity potential. The func-
tional J is defined as

J(u) := (∇S ui)k δi,l δj,k(∇S uj)l + ui uj div(∂inj n).

The equations (2) and (3) are the model equations.

3 Numerical Method

The Lagrange-Galerkin method consists in a semi-Lagrangian timestep method and
a FEM for the spatial discretization and has been used for spherical shallow-water
equations in [7]. To provide grid adaptation with the help of error estimators good
stability behavior plays a decisive role.

In the case of the linear advection we know that the semi-Lagrangian method is
unconditionally stable, see [8]. Due to the lack of analytical results for the shallow-
water equations we assume good stability behavior in the present case, too.

The FEM is very flexibly applicable, see e.g., [6]. In particular, the method is
independent of the sizes and arrangement of the grid’s elements and one can easily
combine elements of different order. These properties make the FEM well suited
for the presented adaptive model.

The spatial distribution of grid points in an adaptive model should be controlled
by a posteriori error estimators. The used triangulation based on the icosahedral
grid is refinable and coarsable independent of the well known pole problem or sin-
gularities and thus, it is the appropriate structure for discretization.

3.1 Discretization

The time discretization consists in two main steps. First, we compute the velocity
field u explicitly from vorticity and divergence with the help of the Helmholtz
decomposition (3). In doing so it is necessary to solve two Poisson equations (see
section 3.3) and to compute derivatives of the potentials. The resulting velocity
field is inserted as explicit data in the model equations (2).

In the second step, we apply the semi-Lagrangian method by substituting the
total derivatives in the equations (2) by the difference quotient according to the
method of characteristics, see [9]. This means, we introduce the trajectory function
X : S × (0, T )× (0, T )→ S as a solution of the initial value problem

∂τX(x, τ, t) = u(X(x, τ, t), τ), X(x, t, t) = x

for every position x ∈ S and times t, τ ∈ (0, T ). For an arbitrary function φ :
S × (0, T )→ R this leads to

∂tφ(x, t) + u · ∇S φ(x, t) = ∂τφ(X(x, τ, t), τ)|τ=t.
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Figure 1: Icosahedral macrotriangulation and adaptive grid according to an a pos-
teriori error estimator

For a timestep ∆t we now substitute the right hand side by the difference quotient
and obtain

∂tφ+ u · ∇S φ(x, t) ∼=
1

∆t
(φ(x, t)− φ(X(x, t−∆t, t), t−∆t)) .

In the model, X(x, t − ∆t, t) is approximated with an appropriate Runge-Kutta
method. For the model equations (2) this leads to the time discretized version

ζ(x, t) + ∆t ζ(x, t) δ(x, t) + ∆t f δ(x, t) = f1(x, t),
δ(x, t) + ∆t ∆S Φ(x, t)−∆t f ζ(x, t) = f2(x, t),

Φ(x, t) + ∆tΦ(x, t) δ(x, t)−∆tΦ0 δ(x, t) = f3(x, t)

 (4)

for some functions f1, f2, f3 which contain data from the old timestep.
The remaining spatial derivatives are treated with the FEM leading to a non-

linear system of equations (nonlinearities in the first and last equation of (4)). The
nonlinearity is solved by an iteration process that is truncated after a fixed number
of iterations (one or two). In the end, we have to solve a linear system of equations
(see section 3.3) yielding the new values on the grid for ζ, δ and Φ simultaneously.

3.2 Grid structure

The presented model uses the grid generator amatos 1 which was invented by J.
Behrens, see [2]. amatos works with a Fortran 90 interface, is able to store the
model data, adapts the grid structure according to a given refinement criterion,
uses hierarchical data structures, supports grid partitioning by the space filling
curve (SFC) approach and is available in a shared memory parallel version with
OpenMP.

In Fig. 1 the initial icosahedral macrotriangulation and the adapted grid accord-
ing to an a posteriori error estimator, generated with amatos, is to be seen. The
construction of a grid partitioning by cutting the SFC into equal chunks of elements
is depicted in Fig. 2.

When implementing PLASMA with amatos, we had to extend the construction
of the SFC through the elements from plane to spherical geometries. At the same

1http://www-m8.mathematik.tu-muenchen.de/m3/software/amatos
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Figure 2: Space filling curve through the elements of a spherical grid with a resulting
grid partitioning on 6 processors and a zoom into a refined region

time, we made more information accessible by calculating an SFC through the
vertices and edges, too, and by providing all information (e.g., element vertices,
nodes coordinates, values at nodes) in arrays sorted along the SFC which also
allows to profit from the high data locality on cache level. The impact of the SFC
numbering of vertices on the sparsity pattern of a typical stiffness matrix from our
model can be studied in Fig. 3 where most entries are gathered close to the diagonal.
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Figure 3: Sparsity pattern of a stiffness matrix for an adaptively refined grid with
original numbering (nodes in order of creation) and SFC numbering of nodes

3.3 Linear Solver

The problem of the solution of large linear systems of equations (see section 3.1)
requires very efficient computational methods. Especially parallel methods are con-
venient to obtain reasonable performance. Hence the model uses the SFC approach
to realize a good grid partitioning and the parallel solver interface FoSSI (Family
of Simplified Solver Interfaces), see [5].

The model’s matrices are solved via the FoSSI-interface to PETSC (see [1]), with
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the restarted GMRES iterative solver. The restricted additive Schwarz method for
parallel preconditioning is applied with ILU(k) or ILUT preconditioners on the
subdomains obtained from the SFC. FoSSI offers a highly scalable and flexible
solver-setup that allows efficient model simulations on parallel computers. Currently
the solver part of the model speeds up for up to 24 CPUs on a SUN-Fire 6800 system
with 1050MHz UltraSPARC III CPUs.

4 Computational Results

For a first validation of the model an analytical solution is very convenient, because
the numerical error can be computed exactly.

Here we consider the solid body rotation on the unit sphere S with varying axes.
The initial condition depending on the angle α for the inclination of the rotation
axis is given by

u(x) = ca(α)× x ⇔ ζ(x) = c 2 a(α) · x, δ(x) = 0,

Φ(x) = −1
2
[
(ca(α) · x)2 + 2 ca(α) · x Ω · x

]
+ C

with u0 = 30ms , earth radius R, an arbitrary constant C and

c :=
u0

R
, a(α) :=

− sin(α)
0

cos(α)

 , Ω :=

0
0
Ω

 .

With the underlying orography

Φ0(x) =
Ω2

2
− (Ω · x)2

2

we obtain a time periodic quasistationary flow. In Fig. 4 we see the initial conditions
for the velocity field u and the geopotential φ.

number of nodes
∆t in s 642 1282 2562 5122

3600 0.58 0.33 0.21 0.14
1800 0.60 0.33 0.21 0.14
900 0.59 0.33 0.21 0.14
450 0.59 0.33 0.21 0.14

number of nodes
∆t in s 642 1282 2562 5122

3600 0.49 0.32 0.27 0.25
1800 0.49 0.29 0.23 0.19
900 0.48 0.26 0.19 0.15
450 0.47 0.24 0.18 0.12

Table 1: Relative L2(S) - error of the geopotential Φ after an iteration time of two
days, cases α = 0 (left) and α = π

4 (right)

In table 1 the relative L2(S) - error is printed for an integration time of two days.
We see, that the error decreases for an increasing spatial and time resolution. This
means, that we have shown for these two experiments the experimental convergence
of the numerical method.

5 Outlook

The project PLASMA focuses on the investigation of internally generated variability
of the earth’s atmosphere. In order to achieve this goal we will run this model for 30
days up to several months. This requires a further improvement, e.g., of the physical
error estimators, of the numerical methods and parameters and of the conservation
properties.
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Figure 4: Initial conditions for the velocity field u and the geopotential φ (unit of
measurement meter) for the case α = π
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Appendix

According to [4] we define for arbitrary functions g : S → R and v : S → R
3 the

spherical differential operators

∇S g := ∇g̃ − (n · ∇g̃) n,

divS v := div ṽ − div((ṽ · n) n),
rotS v := n · rot ṽ,

rotS g := rot(g̃ n),
∆S g := divS∇S g

on S. g̃ and ṽ are smooth continuations of g and v to a neighborhood of S.
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