Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities


Contact
Sabine.Kasten [ at ] awi.de

Abstract

Sulfate reduction is a globally important yet poorly quantified redox process in marine sediments. We developed an artificial neural network trained with 199 sulfate profiles, constrained with geomorphological and geochemical maps to estimate global sulfate reduction rate distributions. Globally, 11.3 Tmol sulfate are reduced yearly, ~15% of previous estimates, accounting for the oxidation of 12-29% of the organic carbon flux to the sea floor. Combined with global cell distributions in marine sediments, these results indicate a strong contrast in sub–sea-floor prokaryote habitats: in continental margins global cell numbers in sulfate-depleted sediment exceed those in the overlying sulfate-bearing sediment by an order of magnitude, whereas in the abyss most life occurs in oxic and/or sulfate-reducing sediments.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
Scopus/ISI peer-reviewed
Publication Status
Published
Eprint ID
35572
DOI 10.1126/science.1249213

Cite as
Bowles, M. W. , Mogollón, J. M. , Kasten, S. , Zabel, M. and Hinrichs, K. U. (2014): Global rates of marine sulfate reduction and implications for sub-sea-floor metabolic activities , Science . doi: 10.1126/science.1249213


Download
[img]
Preview
PDF
Bowles_et_al_2014.pdf

Download (1MB) | Preview
Cite this document as:

Share


Citation

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item