Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua


Contact
Magnus.Lucassen [ at ] awi.de

Abstract

CO2-driven seawater acidification has been demonstrated to enhance intestinal bicarbonate secretion rates in teleosts, leading to an increased release of CaCO3 under simulated ocean acidification scenarios. In this study, we investigated if increasing CO2 levels stimulate the intestinal acid–base regulatory machinery of Atlantic cod (Gadus morhua) and whether temperatures at the upper limit of thermal tolerance stimulate or counteract ion regulatory capacities. Juvenile G. morhua were acclimated for 4 weeks to three CO2 levels (550, 1200, and 2200 μatm) covering present and near-future natural variability, at optimum (10°C) and summer maximum temperature (18°C), respectively. Immunohistochemical analyses revealed the subcellular localization of ion transporters, including Na+/K+-ATPase (NKA), Na+/H+-exchanger 3 (NHE3), Na+/HCO−3 cotransporter (NBC1), pendrin-like Cl−/HCO−3 exchanger (SLC26a6), V-type H+-ATPase subunit a (VHA), and Cl− channel 3 (CLC3) in epithelial cells of the anterior intestine. At 10°C, proteins and mRNA were generally up-regulated for most transporters in the intestinal epithelium after acclimation to higher CO2 levels. This supports recent findings demonstrating increased intestinal HCO−3 secretion rates in response to CO2 induced seawater acidification. At 18°C, mRNA expression and protein concentrations of most ion transporters remained unchanged or were even decreased, suggesting thermal compensation. This response may be energetically favorable to retain blood HCO−3 levels to stabilize pHe, but may negatively affect intestinal salt and water resorption of marine teleosts in future oceans.



Item Type
Article
Authors
Divisions
Primary Division
Programs
Primary Topic
Peer revision
ISI/Scopus peer-reviewed
Publication Status
Published
Eprint ID
43035
DOI 10.3389/fphys.2016.00198

Cite as
Hu, M. Y. , Michael, K. , Kreiß, C. , Stumpp, M. , Dupont, S. , Tseng, Y. C. and Lucassen, M. (2016): Temperature Modulates the Effects of Ocean Acidification on Intestinal Ion Transport in Atlantic Cod, Gadus morhua , Front. Physiol., 7 (198) . doi: 10.3389/fphys.2016.00198


Download
[img]
Preview
PDF
Hu_etal2016.pdf

Download (4MB) | Preview
Cite this document as:

Share


Citation

Research Platforms
N/A

Campaigns


Actions
Edit Item Edit Item